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In this paper, we consider compact translating solitons with non-empty planar 
boundary. Each boundary component lies in a plane which is orthogonal to the 
translating direction. We firstly prove that when the planar boundary is either a 
circle or convex and the translating soliton meets the plane containing the boundary 
with a constant angle, then the compact translating soliton is part of an entire 
rotationally symmetric strictly convex graphical surface. Secondly, we show that a 
compact translating soliton spanning two horizontal planar Jordan curves inherits
the symmetries of its boundary. We also show a balancing type formula for compact 
translating solitons with planar boundary.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For a compact surface with boundary, the study of influence of the boundary on the surface is a clas-
sical topic in differential geometry. The simplest compact boundary is clearly a circle. One of long-lasting 
interesting problems about circular boundary is the spherical cap conjecture:

A constant mean curvature surface Σ ⊂ R
3 with a circular boundary is a planar disc or a spherical cap 

when Σ is either an immersed disc or a compact embedded surface.
There are some interesting partial results on this conjecture [5,10,12,13]. In [4], Hoffman, Rosenberg and 

Spruck showed that a compact constant Gaussian curvature surface spanning a circle is a spherical cap.
In this paper, we study the rigidity of translating solitons spanning a planar boundary (including a 

circular boundary).
Let x : Σn → R

n+1 be an n-dimensional isometric immersion, for simplicity we identify x(Σ) with Σ. For 
a unit vector v ∈ R

n+1, Σ is a translating soliton of the unit speed with respect to the translating direction 
v if X(p, t) = x(p) + tv : Σ × R → R

n+1 satisfies the following mean curvature flow equation
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Xt(p, t) = �H(X(p, t)),

for all (p, t) ∈ Σ × R, that is, Σ satisfies H = 〈N, v〉, where �H = HN is the mean curvature vector.
Translating solitons arise as parabolic rescaling of Type-II singularities of the mean curvature flow [8].
The simplest nonplanar translating soliton is an entire rotationally symmetric strictly convex graphical 

hypersurface, U , found by Altschler and Wu [1] for n = 2, and Gui, Jian and Ju [6] for n ≥ 3. It is unique 
up to translation.

From now on, by using an isometry, we assume that v = en+1 = (0, . . . , 1). Denoting the distance function, 
r =

√
x2

1 + · · · + x2
n for n ≥ 2, U is the graph of the following ordinary differential equation with respect 

to r, xn+1 = u(r),

u′′(r)
1 + u′(r)2

+ (n− 1)u
′(r)
r

= 1,

with u(0) = u′(0) = 0. Moreover, as r → ∞

u(r) = r2

2(n− 1) − ln r + O(r−1),

that is, U = Graph(u) is asymptotic to a parabola.
We note that Clutterbuck, Schnürer and Schulze [3] showed that there exist non-convex rotationally 

symmetric translating solitons in R3 named winglike translating solitons. Nguyen [14,15] constructed various 
complete embedded translating solitons in R3 using a gluing technique.

Now we consider compact translating solitons with non-empty planar boundary. From the view point of 
rotationally symmetric surfaces, we show that the compact part of U separated by a horizontal plane is 
characterized as follows:

Main Theorem. Let U be the entire rotationally symmetric strictly convex graphical translating soliton 
in R

3. Let Σ be a compact connected immersed translating soliton with smooth boundary Γ = ∂Σ lying in a 
horizontal plane Π = {(x, y, z)|z = c ∈ R}.

(1) If Γ is a circle, then Σ is part of U .
(2) If Γ is convex and Σ meets Π with a constant angle along Γ, then Σ is also part of U .

When a compact translating soliton Σ is graphical over a domain D in a horizontal plane, then there 
exists a function u(x, y) so that Graph(u) = Σ and it satisfies

√
1 + |∇u|2div

(
∇u√

1 + |∇u|2

)
= 1,

for all (x, y) ∈ D. Serrin [17, §20] showed that the necessary and sufficient conditions for existence of such 
a function are that the domain D is mean convex. So there are plenty of compact translating solitons with 
planar boundary which are different from a compact part of U separated by a horizontal plane. We note 
that Serrin’s result holds for higher dimension.

2. Proof of the Main Theorem

A fundamental tool to prove the Main Theorem is the tangency principle based on maximum principle 
of elliptic partial differential equations.
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