

Oscillation and nonoscillation results for solutions of half-linear equations with deviated argument

Pavel Drábek ${ }^{\text {a,* }}$, Alois Kufner ${ }^{\text {b }}$, Komil Kuliev ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, University of West Bohemia, Univerzitní 22, CZ-306 14 Plzeň, Czechia
${ }^{\text {b }}$ Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, CZ-115 67 Praha 1, Czechia
${ }^{c}$ Department of Mathematics, Samarkand State University, University boulevard 15, Samarkand 140104, Uzbekistan

A R T I C L E I N F O

Article history:
Received 24 June 2016
Available online 17 October 2016
Submitted by W. Sarlet
Keywords:
Half-linear equation
Oscillatory solution
Nonoscillatory solution
Hardy inequality

Abstract

We present oscillatory and nonoscillatory criteria for solutions of half-linear equations with deviated argument. Our method relies on the weighted Hardy inequality and differs from ones presented in the literature so far.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider the half-linear equation with deviated argument

$$
\begin{equation*}
\left(r(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right)^{\prime}+c(t)|u(\tau(t))|^{p-2} u(\tau(t))=0, \quad t \in(0, \infty) \tag{1.1}
\end{equation*}
$$

where $p>1, c:[0, \infty) \rightarrow(0, \infty)$ is continuous, $c \in L^{1}(0, \infty), r:[0, \infty) \rightarrow(0, \infty)$ is continuously differentiable, $\tau:[0, \infty) \rightarrow \mathbb{R}$ is continuously differentiable and increasing function satisfying $\lim _{t \rightarrow \infty} \tau(t)=\infty$.

Assume that (1.1) has at least one nonzero global solution (see Section 2 for definition). We say that a global solution of (1.1) is nonoscillatory (at ∞) if there exists $T>0$ such that $u(t) \neq 0$ for all $t>T$. Otherwise, it is called oscillatory, i.e., there exists a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} t_{n}=\infty$ and $u\left(t_{n}\right)=0$ for all $n \in \mathbb{N}$.

We prove the following two results. Note that $p^{\prime}:=\frac{p}{p-1}$.

[^0]Theorem 1.1 (nonoscillatory criterion). Let

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left(\int_{0}^{t} r^{1-p^{\prime}}(s) \mathrm{d} s\right)\left(\int_{t}^{\infty} c(s) \mathrm{d} s\right)^{\frac{1}{p-1}}<\frac{p-1}{p^{p^{\prime}}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left(\int_{0}^{\tau(t)} r^{1-p^{\prime}}(s) \mathrm{d} s\right)\left(\int_{t}^{\infty} c(s) \mathrm{d} s\right)^{\frac{1}{p-1}}<\frac{p-1}{p^{p^{\prime}}} . \tag{1.3}
\end{equation*}
$$

Then every global solution of (1.1) is nonoscillatory.

Theorem 1.2 (oscillatory criterion). Let one of the following three cases occur:
(i) There exists $T>0$ such that for all $t \geq T$ we have $\tau(t) \geq t$ and

$$
\limsup _{t \rightarrow \infty}\left[\left(\int_{0}^{t} r^{1-p^{\prime}}(s) \mathrm{d} s\right)\left(\int_{t}^{\infty} c(s) \mathrm{d} s\right)^{\frac{1}{p-1}}+\left(\int_{t}^{\tau(t)} r^{1-p^{\prime}}(s) \mathrm{d} s\right)\left(\int_{\tau(t)}^{\infty} c(s) \mathrm{d} s\right)^{\frac{1}{p-1}}\right]>1 .
$$

(ii) There exists $T>0$ such that for all $t \geq T$ we have $\tau(t) \leq t$ and

$$
\limsup _{t \rightarrow \infty}\left(\int_{0}^{\tau(t)} r^{1-p^{\prime}}(s) \mathrm{d} s\right)\left(\int_{t}^{\infty} c(s) \mathrm{d} s\right)^{\frac{1}{p-1}}>1 .
$$

(iii) For any $T>0$ the function $\tau(t)-t$ changes sign in (T, ∞) and either

$$
\liminf _{\substack{t \rightarrow \infty \\ t>\tau(t)}}\left(\int_{0}^{\tau(t)} r^{1-p^{\prime}}(s) \mathrm{d} s\right)\left(\int_{t}^{\infty} c(s) \mathrm{d} s\right)^{\frac{1}{p-1}}>1
$$

or

$$
\liminf _{\substack{t \rightarrow \infty \\ t<\tau(t)}}\left[\left(\int_{0}^{t} r^{1-p^{\prime}}(s) \mathrm{d} s\right)\left(\int_{t}^{\infty} c(s) \mathrm{d} s\right)^{\frac{1}{p-1}}+\left(\int_{t}^{\tau(t)} r^{1-p^{\prime}}(s) \mathrm{d} s\right)\left(\int_{\tau(t)}^{\infty} c(s) \mathrm{d} s\right)^{\frac{1}{p-1}}\right]>1 .
$$

Then every global solution of (1.1) is oscillatory.
A typical example of $\tau=\tau(t)$ is a linear function

$$
\tau(t)=t-\tau, \quad \tau \geq 0 \quad \text { is fixed. }
$$

Then (1.1) is half-linear equation with the delay given by fixed parameter $\tau \geq 0$. For this rather special case, (1.2) implies (1.3) and only the case (ii) of Theorem 1.2 occurs. Hence we have the following corollary concerning the equation

https://daneshyari.com/en/article/4613741

Download Persian Version
https://daneshyari.com/article/4613741

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: pdrabek@kma.zcu.cz (P. Drábek), kufner@math.cas.cz (A. Kufner), komilkuliev@gmail.com (K. Kuliev).

