# Quantum information inequalities via tracial positive linear maps 

Ali Dadkhah, Mohammad Sal Moslehian*<br>Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

## A R T I C L E I N F O

## Article history:

Received 26 July 2016
Available online 19 October 2016
Submitted by J.A. Ball

## Keywords:

Tracial positive linear map
Heisenberg uncertainty relation
Generalized covariance
Generalized correlation
Generalized Wigner-Yanase skew
information
$C^{*}$-algebra


#### Abstract

We present some generalizations of quantum information inequalities involving tracial positive linear maps between $C^{*}$-algebras. Among several results, we establish a noncommutative Heisenberg uncertainty relation. More precisely, we show that if $\Phi$ : $\mathcal{A} \rightarrow \mathcal{B}$ is a tracial positive linear map between $C^{*}$-algebras, $\rho \in \mathcal{A}$ is a $\Phi$-density element and $A, B$ are self-adjoint operators of $\mathcal{A}$ such that $\operatorname{sp}\left(-\mathrm{i} \rho^{\frac{1}{2}}[A, B] \rho^{\frac{1}{2}}\right) \subseteq[m, M]$ for some scalers $0<m<M$, then under some conditions


$$
\begin{equation*}
V_{\rho, \Phi}(A) \sharp V_{\rho, \Phi}(B) \geq \frac{1}{2 \sqrt{K_{m, M}(\rho[A, B])}}|\Phi(\rho[A, B])| \tag{0.1}
\end{equation*}
$$

where $K_{m, M}(\rho[A, B])$ is the Kantorovich constant of the operator -i $\rho^{\frac{1}{2}}[A, B] \rho^{\frac{1}{2}}$ and $V_{\rho, \Phi}(X)$ is the generalized variance of $X$. In addition, we use some arguments differing from the scalar theory to present some inequalities related to the generalized correlation and the generalized Wigner-Yanase-Dyson skew information.
© 2016 Elsevier Inc. All rights reserved.

## 1. Introduction and preliminaries

In quantum measurement theory, the classical expectation value of an observable (self-adjoint operator) $A$ in a quantum state (density operator) $\rho$ is expressed by $\operatorname{Tr}(\rho A)$. Also, the classical variance for a quantum state $\rho$ and an observable operator $A$ is defined by $V_{\rho}(A):=\operatorname{Tr}\left(\rho A^{2}\right)-(\operatorname{Tr}(\rho A))^{2}$. The Heisenberg uncertainty relation asserts that

$$
\begin{equation*}
V_{\rho}(A) V_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}(\rho[A, B])|^{2} \tag{1.1}
\end{equation*}
$$

[^0]http://dx.doi.org/10.1016/j.jmaa.2016.10.027
0022-247X/© 2016 Elsevier Inc. All rights reserved.
for a quantum state $\rho$, where $[A, B]:=A B-B A$ is the commutator of two observables $A$ and $B$; see [6]. It gives a fundamental limit for the measurements of incompatible observables. A further strong result was given by Schrödinger [15] as
\[

$$
\begin{equation*}
V_{\rho}(A) V_{\rho}(B)-\left|\operatorname{Re}\left(\operatorname{Cov}_{\rho}(A, B)\right)\right|^{2} \geq \frac{1}{4}|\operatorname{Tr}(\rho[A, B])|^{2}, \tag{1.2}
\end{equation*}
$$

\]

where the classical covariance is defined by $\operatorname{Cov}_{\rho}(A):=\operatorname{Tr}(\rho A B)-\operatorname{Tr}(\rho A) \operatorname{Tr}(\rho B)$.
Yanagi et al. [18] defined the one-parameter correlation and the one-parameter Wigner-Yanase skew information (is known as the Wigner-Yanase-Dyson skew information; cf. [10]) for operators $A, B$, respectively, as follows

$$
\operatorname{Corr}_{\rho}^{\alpha}(A, B):=\operatorname{Tr}\left(\rho A^{*} B\right)-\operatorname{Tr}\left(\rho^{1-\alpha} A^{*} \rho^{\alpha} B\right) \quad \text { and } \quad I_{\rho}^{\alpha}(A):=\operatorname{Corr}_{\rho}^{\alpha}(A, A),
$$

where $\alpha \in[0,1]$. They showed a trace inequality representing the relation between these two quantities as

$$
\begin{equation*}
\left|\operatorname{Re}\left(\operatorname{Corr}_{\rho}^{\alpha}(A, B)\right)\right|^{2} \leq I_{\rho}^{\alpha}(A) I_{\rho}^{\alpha}(B) . \tag{1.3}
\end{equation*}
$$

In the case that $\alpha=\frac{1}{2}$, we get the classical notions of the correlation $\operatorname{Corr}_{\rho}(A, B)$ and the Wigner-Yanase skew information $I_{\rho}(A)$. The classical Wigner-Yanase skew information represents a for non-commutativity between a quantum state $\rho$ and an observable $A$.

Luo [11] introduced the quantity $U_{\rho}(A)$ as a measure of uncertainty by

$$
U_{\rho}(A)=\sqrt{V_{\rho}(A)^{2}-\left(V_{\rho}(A)-I_{\rho}(A)\right)^{2}} .
$$

He then showed a Heisenberg-type uncertainty relation on $U_{\rho}(A)$ as

$$
\begin{equation*}
U_{\rho}(A) U_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}(\rho[A, B])|^{2} . \tag{1.4}
\end{equation*}
$$

These inequalities was studied and extended by a number of mathematicians. For further information we refer interested readers to $[3,5,8,17]$.

Let $\mathbb{B}(\mathcal{H})$ denote the $C^{*}$-algebra of all bounded linear operators on a complex Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle)$ with the unit $I$. If $\mathcal{H}=\mathbb{C}^{n}$, we identify $\mathbb{B}\left(\mathbb{C}^{n}\right)$ with the matrix algebra of $n \times n$ complex matrices $M_{n}(\mathbb{C})$. We consider the usual Löwner order $\leq$ on the real space of self-adjoint operators. Throughout the paper, a capital letter means an operator in $\mathbb{B}(\mathcal{H})$. An operator A is said to be strictly positive (denoted by $A>0$ ) if it is a positive invertible operator. According to the Gelfand-Naimark-Segal theorem, every $C^{*}$-algebra can be regarded as a $C^{*}$-subalgebra of $\mathbb{B}(\mathcal{H})$ for some Hilbert space $\mathcal{H}$. So we may consider elements of $\mathcal{A}$ as Hilbert space operators. We use $\mathcal{A}, \mathcal{B}, \cdots$ to denote $C^{*}$-algebras. We denote by $\operatorname{Re}(A)$ and $\operatorname{Im}(A)$ the real and imaginary parts of $A$, respectively. The geometric mean is defined by $A \sharp B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}}$ for operators $A>0$ and $B \geq 0$. A $W^{*}$-algebra is a $*$-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. The $C^{*}$-algebra of complex valued continuous functions on the compact Hausdorff space $\Omega$ is denoted by $C(\Omega)$.

A linear map $\Phi: \mathcal{A} \longrightarrow \mathcal{B}$ between $C^{*}$-algebras is said to be $*$-linear if $\Phi\left(A^{*}\right)=\Phi(A)^{*}$. It is positive if $\Phi(A) \geq 0$ whenever $A \geq 0$. It is called strictly positive if $A>0$, then $\Phi(A)>0$. We say that $\Phi$ is unital if $\mathcal{A}, \mathcal{B}$ are unital and $\Phi$ preserves the unit. A linear map $\Phi$ is called $n$-positive if the map $\Phi_{n}: M_{n}(\mathcal{A}) \longrightarrow M_{n}(\mathcal{B})$ defined by $\Phi_{n}\left(\left[a_{i j}\right]\right)=\left[\Phi\left(a_{i j}\right)\right]$ is positive, where $M_{n}(\mathcal{A})$ stands for the $C^{*}$-algebra of $n \times n$ matrices with entries in $\mathcal{A}$. A map $\Phi$ is said to be completely positive if it is $n$-positive for every $n \in \mathbb{N}$. According to [16, Theorem 1.2.4] if the range of the positive linear map $\Phi$ is commutative, then $\Phi$ is completely positive. It is known (see, e.g., [4]) that if $\Phi$ is a unital positive linear map, then

# https://daneshyari.com/en/article/4613754 

Download Persian Version:
https://daneshyari.com/article/4613754

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: dadkhah61@yahoo.com (A. Dadkhah), moslehian@um.ac.ir (M.S. Moslehian).

