Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Projection operators nearly orthogonal to their symmetries $\stackrel{\Rightarrow}{\Rightarrow}$

Sam Walters

Department of Mathematics & Statistics, University of Northern B.C., Prince George, B.C. V2N 4Z9, Canada

ARTICLE INFO

Article history: Received 28 June 2016 Available online 16 September 2016 Submitted by H. Lin

Keywords: Hilbert space Norm approximation C*-algebras Automorphisms Projections Orthogonality ABSTRACT

For any order 2 automorphism α of a C*-algebra A (a symmetry of A), we prove that for each projection e such that $\|e\alpha(e)\| \leq \frac{9}{20}$, there exists a projection q with $q\alpha(q) = 0$ satisfying the norm estimate

$$||e - q|| \le \frac{1}{2} ||e\alpha(e)|| + 4 ||e\alpha(e)||^2.$$

In other words, if e is a projection that is "nearly orthogonal" to its symmetry $\alpha(e)$ in the sense that the norm $\|e\alpha(e)\|$ is no more than $\frac{9}{20}$, then e can be approximated by a projection q that is exactly orthogonal to its symmetry in a fairly optimal fashion. (Optimal in the sense that the first term in the estimate satisfies $\frac{1}{2} \|e\alpha(e)\| \leq \|e-q\|$ for any such q.)

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to obtain a fine estimate for the norm difference ||e - q|| in terms of the norm $||e\alpha(e)||$ of a projection e relative to a symmetry α (order 2 automorphism), where q is a projection that is orthogonal to its symmetry (i.e. $q\alpha(q) = 0$). The norm $||e\alpha(e)||$ measures the degree to which e is or is not orthogonal to its symmetric image $\alpha(e)$. It is shown that for all C*-algebras this degree does not have to be too small in order that the projection e can be approximated by a projection q that is exactly orthogonal to its symmetry. We show the existence for such fine approximation when the norm $||e\alpha(e)||$ is at most $\frac{9}{20} = 0.45$. Further, a bound for the norm ||e - q|| is expressed in terms of a simple quadratic function of $||e\alpha(e)||$. The main result is the following.

http://dx.doi.org/10.1016/j.jmaa.2016.09.013 0022-247X/© 2016 Elsevier Inc. All rights reserved.

霐

^{*} Research partly supported by a grant from NSERC. *E-mail address:* walters@unbc.ca. *URL:* http://hilbert.unbc.ca.

Theorem 1.1. Let A be any C*-algebra and α a symmetry of A. If e is a projection in A such that $||e\alpha(e)|| < \xi(\approx 0.455)$, then there exists a projection q in the C*-subalgebra generated by $e, \alpha(e)$ such that

$$q\alpha(q) = 0, \qquad \|e - q\| \le \frac{1}{2} \|e\alpha(e)\| + 4 \|e\alpha(e)\|^2.$$
(1.1)

Theorem 1.2. Let e be any projection operator and u any Hermitian unitary operator on Hilbert space such that $||eue|| < \xi (\approx 0.455)$. Then there exists a projection operator q such that

$$quq = 0,$$
 $||e - q|| \le \frac{1}{2} ||eue|| + 4 ||eue||^2.$

Further, q is in the C*-subalgebra of $\mathcal{B}(\mathcal{H})$ generated by e, ueu*.

The number $\xi \approx 0.4550898$ is the positive root of $x^2(2+4F(x^2)) = 1$ (where F is defined by (2.1) below). It is clear that Theorem 1.2 follows from 1.1 (since the symmetry on $\mathcal{B}(\mathcal{H})$ in this case is $\alpha(x) = uxu^*$).

The precision of the inequality (1.1) is recognized by noting that the norm ||e - q|| is always at least the first term on the right side:

$$\frac{1}{2} \|e\alpha(e)\| \le \|e - q\| \tag{1.2}$$

for any projection q that is orthogonal to its symmetry $(q\alpha(q) = 0)$. Indeed, this is easy to see from the equality

$$e\alpha(e) = (e-q)\alpha(q) + e\alpha(e-q)$$

which gives (1.2). The theorem therefore estimates the norm ||e-q|| from its minimum value (over such q's) to within a quadratic order of magnitude:

$$\frac{1}{2} \|e\alpha(e)\| \leq \|e-q\| \leq \frac{1}{2} \|e\alpha(e)\| + 4 \|e\alpha(e)\|^2.$$

In order to improve our estimates, we used the following anticommutator norm formula that we proved in [2].

Theorem 1.3. (See [2].) For any two projection operators f, g on Hilbert space, one has

$$||fg + gf|| = ||fg|| + ||fg||^2.$$

We note that a C*-algebra A that possesses a symmetry contains non-trivial α -orthogonal positive elements. For example, pick a Hermitian element h such that $\alpha(h) \neq h$ and let $x = h - \alpha(h)$, a nonzero Hermitian element such that $\alpha(x) = -x$. The positive part $a = \frac{1}{2}(|x| + x)$ of x is non-zero (since the spectrum of x contains positive and negative real numbers) and clearly satisfies $a\alpha(a) = 0$. If further, the hereditary C*-subalgebra generated by a, namely \overline{aAa} , contains projections then these will automatically be α -orthogonal projections. In particular, if A has real rank zero¹ and has a symmetry, then it contains many α -orthogonal projections.

Theorem 1.1 can be applied in particular to the flip automorphism $U \to U^{-1}, V \to V^{-1}$ of the rotation C^* -algebra A_{θ} generated by unitaries U, V subject to the commutation relation $VU = e^{2\pi i \theta} UV$ – or, indeed, to the flip on any higher dimensional noncommutative torus. The result can also be applied to the noncommutative Fourier transform $U \to V \to U^{-1}$ restricted the fixed point subalgebra of A_{θ} under the flip.

 $^{^{1}}$ That is, each Hermitian element can be approximated by a Hermitian with finite spectrum.

Download English Version:

https://daneshyari.com/en/article/4613771

Download Persian Version:

https://daneshyari.com/article/4613771

Daneshyari.com