

Projection operators nearly orthogonal to their symmetries ${ }^{\text {*/ }}$

Sam Walters
Department of Mathematics \& Statistics, University of Northern B.C., Prince George, B.C. V2N 4Z9, Canada

A R T I C L E I N F O

Article history:

Received 28 June 2016
Available online 16 September 2016
Submitted by H. Lin

Keywords:

Hilbert space
Norm approximation
C^{*}-algebras
Automorphisms
Projections
Orthogonality

ABSTRACT

For any order 2 automorphism α of a C^{*}-algebra A (a symmetry of A), we prove that for each projection e such that $\|e \alpha(e)\| \leq \frac{9}{20}$, there exists a projection q with $q \alpha(q)=0$ satisfying the norm estimate

$$
\|e-q\| \leq \frac{1}{2}\|e \alpha(e)\|+4\|e \alpha(e)\|^{2}
$$

In other words, if e is a projection that is "nearly orthogonal" to its symmetry $\alpha(e)$ in the sense that the norm $\|e \alpha(e)\|$ is no more than $\frac{9}{20}$, then e can be approximated by a projection q that is exactly orthogonal to its symmetry in a fairly optimal fashion. (Optimal in the sense that the first term in the estimate satisfies $\frac{1}{2}\|e \alpha(e)\| \leq\|e-q\|$ for any such q.)
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to obtain a fine estimate for the norm difference $\|e-q\|$ in terms of the norm $\|e \alpha(e)\|$ of a projection e relative to a symmetry α (order 2 automorphism), where q is a projection that is orthogonal to its symmetry (i.e. $q \alpha(q)=0$). The norm $\|e \alpha(e)\|$ measures the degree to which e is or is not orthogonal to its symmetric image $\alpha(e)$. It is shown that for all C^{*}-algebras this degree does not have to be too small in order that the projection e can be approximated by a projection q that is exactly orthogonal to its symmetry. We show the existence for such fine approximation when the norm $\|e \alpha(e)\|$ is at most $\frac{9}{20}=0.45$. Further, a bound for the norm $\|e-q\|$ is expressed in terms of a simple quadratic function of $\|e \alpha(e)\|$. The main result is the following.

[^0]Theorem 1.1. Let A be any C^{*}-algebra and α a symmetry of A. If e is a projection in A such that $\|e \alpha(e)\|<$ $\xi(\approx 0.455)$, then there exists a projection q in the C^{*}-subalgebra generated by $e, \alpha(e)$ such that

$$
\begin{equation*}
q \alpha(q)=0, \quad\|e-q\| \leq \frac{1}{2}\|e \alpha(e)\|+4\|e \alpha(e)\|^{2} \tag{1.1}
\end{equation*}
$$

Theorem 1.2. Let e be any projection operator and u any Hermitian unitary operator on Hilbert space such that $\|e u e\|<\xi(\approx 0.455)$. Then there exists a projection operator q such that

$$
q u q=0, \quad\|e-q\| \leq \frac{1}{2}\|e u e\|+4\|e u e\|^{2} .
$$

Further, q is in the C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ generated by e, ueu*.
The number $\xi \approx 0.4550898$ is the positive root of $x^{2}\left(2+4 F\left(x^{2}\right)\right)=1$ (where F is defined by (2.1) below). It is clear that Theorem 1.2 follows from 1.1 (since the symmetry on $\mathcal{B}(\mathcal{H})$ in this case is $\left.\alpha(x)=u x u^{*}\right)$.

The precision of the inequality (1.1) is recognized by noting that the norm $\|e-q\|$ is always at least the first term on the right side:

$$
\begin{equation*}
\frac{1}{2}\|e \alpha(e)\| \leq\|e-q\| \tag{1.2}
\end{equation*}
$$

for any projection q that is orthogonal to its symmetry $(q \alpha(q)=0)$. Indeed, this is easy to see from the equality

$$
e \alpha(e)=(e-q) \alpha(q)+e \alpha(e-q)
$$

which gives (1.2). The theorem therefore estimates the norm $\|e-q\|$ from its minimum value (over such q 's) to within a quadratic order of magnitude:

$$
\frac{1}{2}\|e \alpha(e)\| \leq\|e-q\| \leq \frac{1}{2}\|e \alpha(e)\|+4\|e \alpha(e)\|^{2}
$$

In order to improve our estimates, we used the following anticommutator norm formula that we proved in [2].

Theorem 1.3. (See [2].) For any two projection operators f, g on Hilbert space, one has

$$
\|f g+g f\|=\|f g\|+\|f g\|^{2} .
$$

We note that a C^{*}-algebra A that possesses a symmetry contains non-trivial α-orthogonal positive elements. For example, pick a Hermitian element h such that $\alpha(h) \neq h$ and let $x=h-\alpha(h)$, a nonzero Hermitian element such that $\alpha(x)=-x$. The positive part $a=\frac{1}{2}(|x|+x)$ of x is non-zero (since the spectrum of x contains positive and negative real numbers) and clearly satisfies $a \alpha(a)=0$. If further, the hereditary C^{*}-subalgebra generated by a, namely $\overline{a A a}$, contains projections then these will automatically be α-orthogonal projections. In particular, if A has real rank zero ${ }^{1}$ and has a symmetry, then it contains many α-orthogonal projections.

Theorem 1.1 can be applied in particular to the flip automorphism $U \rightarrow U^{-1}, V \rightarrow V^{-1}$ of the rotation C*-algebra A_{θ} generated by unitaries U, V subject to the commutation relation $V U=e^{2 \pi i \theta} U V$ - or, indeed, to the flip on any higher dimensional noncommutative torus. The result can also be applied to the noncommutative Fourier transform $U \rightarrow V \rightarrow U^{-1}$ restricted the fixed point subalgebra of A_{θ} under the flip.

[^1]
https://daneshyari.com/en/article/4613771

Download Persian Version:
https://daneshyari.com/article/4613771

Daneshyari.com

[^0]: मे Research partly supported by a grant from NSERC.
 E-mail address: walters@unbc.ca.
 $U R L:$ http://hilbert.unbc.ca.
 http://dx.doi.org/10.1016/j.jmaa.2016.09.013
 0022-247X/© 2016 Elsevier Inc. All rights reserved.

[^1]: ${ }^{1}$ That is, each Hermitian element can be approximated by a Hermitian with finite spectrum.

