

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

MATHEMATICAL
ANALYSIS AND
APPLICATIONS

THE STATE OF THE

www.elsevier.com/locate/jmaa

1-Grothendieck C(K) spaces

Jindřich Lechner

Charles University in Prague, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 186 75, Praha 8, Czech Republic

ARTICLE INFO

Article history: Received 2 November 2015 Available online 28 June 2016 Submitted by B. Cascales

Keywords:
Grothendieck property
Quantitative Grothendieck property
Haydon space
(I)-envelope

ABSTRACT

A Banach space is said to be Grothendieck if weak and weak* convergent sequences in the dual space coincide. This notion has been quantified by H. Bendová. She has proved that ℓ_{∞} has the quantitative Grothendieck property, namely, it is 1-Grothendieck. Our aim is to show that Banach spaces from a certain wider class are 1-Grothendieck, precisely, C(K) is 1-Grothendieck provided K is a totally disconnected compact space such that its algebra of clopen subsets has the so called Subsequential completeness property.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

We say that a Banach space X is Grothendieck if each weak* convergent sequence in the dual space X^* is necessarily weakly convergent. Naturally, every reflexive space is Grothendieck. Classical example of a nonreflexive Grothendieck space is ℓ_{∞} due to Grothendieck [3]. More generally, C(K) is Grothendieck if K is a compact Hausdorff F-space (i.e., disjoint open F_{σ} subsets of K have disjoint closures) [8]. According to R. Haydon [4, 1B Proposition], C(K) is Grothendieck provided K is a totally disconnected compact space such that its algebra of clopen subsets has the so called Subsequential completeness property. In [4] Haydon has constructed such a space which moreover does not contain isomorphic copy of ℓ_{∞} . In [7] H. Pfitzner has shown that each von Neumann algebra is a Grothendieck space. Some other Grothendieck spaces are the Grothendieck spaces are the Grothendieck spaces [6].

The Grothendieck property has been quantified by H. Bendová in [1] as follows:

Definition 1.1 (The Quantitative Grothendieck property). Let X be a Banach space. For a bounded sequence $(x_n^*)_{n\in\mathbb{N}}$ in the dual X^* define two moduli:

$$\delta_{w^*}(x_n^*) := \sup \left\{ \operatorname{diam} \operatorname{clust}(x_n^*(x)) : x \in B_X \right\},$$

[↑] This work was supported by the Grant No. 244214/B-MAT/MFF of the GAUK and by the Research grant GAČR P201/12/0290. E-mail address: j.lechner@hush.com.

$$\delta_w(x_n^*) := \sup \{ \operatorname{diam} \operatorname{clust}(x^{**}(x_n^*)) : x^{**} \in B_{X^{**}} \},$$

where clust (a_n) with (a_n) being a sequence denotes the set of all cluster points of (a_n) . Let $c \ge 1$. We say that X is c-Grothendieck if $\delta_w(x_n^*) \le c\delta_{w^*}(x_n^*)$ whenever $(x_n^*)_{n \in \mathbb{N}}$ is a bounded sequence in X^* .

It is known that ℓ_{∞} is even 1-Grothendieck due to H. Bendová [1, Theorem 1.1]. We generalize this result on a wider class of spaces. This class also includes the space which Haydon has constructed [4].

Now, let us remind the definitions of the above mentioned notions which were essential for Haydon's construction.

Definition 1.2.

- (1) We say that a topological space T is totally disconnected if it contains at least two different points and each two different points are separated by a clopen set.
- (2) We say that a totally disconnected compact space K is a Haydon space if the algebra of its clopen subsets has the Subsequential completeness property (SCP), i.e., if for any sequence $(U_n)_{n\in\mathbb{N}}$ of pairwise disjoint clopen sets there is an infinite set $M\subset\mathbb{N}$ such that the union of $(U_m)_{m\in\mathbb{N}}$ has open closure.

Our aim is to show that C(K), that is $C(K;\mathbb{R})$ or $C(K;\mathbb{C})$, has the Quantitative Grothendieck property, namely it is 1-Grothendieck, provided K is a Haydon space. Since the Quantitative Grothendieck property implies the Qualitative one, our result strengthens Haydon's proposition [4, 1B Proposition].

Theorem 1.3. If S is a Haydon space then C(S) is 1-Grothendieck.

The proof of the theorem is in section 3. Since 1-Grothendieck property of $C(K;\mathbb{R})$ and $C(K;\mathbb{C})$ being equivalent it suffices to get our result for real case. The equivalence is proved in section 2.

Corollary 1.4. C(K) is 1-Grothendieck whenever K is a σ -Stonean compact Hausdorff space (i.e., a compact Hausdorff space in which the closure of any open F_{σ} set is open). In particular, C(K) is 1-Grothendieck whenever K is an extremally disconnected (i.e., every open set has open closure) compact Hausdorff space.

Proof. In view of [8, Theorem A] every σ -Stonean compact Hausdorff space is Haydon. \square

Corollary 1.5. There is a nonreflexive 1-Grothendieck space not containing ℓ_{∞} .

Proof. As we have already said Haydon had constructed a Haydon space K with C(K) not containing ℓ_{∞} [4]. \square

2. Real and complex case equivalence

This section is devoted to the following proposition.

Proposition 2.1. Let K be a compact Hausdorff space. Then the following assertions are equivalent:

- (i) $C(K; \mathbb{R})$ is 1-Grothendieck.
- (ii) $C(K; \mathbb{C})$ is 1-Grothendieck.
- (iii) Whenever μ_n and ν_n , $n \in \mathbb{N}$, are two sequences of Radon probability measures on K such that μ_m and ν_n are mutually singular for each $m, n \in \mathbb{N}$ and $\varepsilon > 0$ then there are $\Lambda \subset \mathbb{N}$ infinite and disjoint compact sets $A, B \subset T$ such that for each $n \in \Lambda$ we have $\mu_n(A) > 1 \varepsilon$ and $\nu_n(B) > 1 \varepsilon$.

Download English Version:

https://daneshyari.com/en/article/4613772

Download Persian Version:

https://daneshyari.com/article/4613772

<u>Daneshyari.com</u>