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We present the uniform stability of classical solutions to the relativistic Enskog 
equation under the locally Lipschitz assumption of the collision factors given by 
Polewczak. This stability is an extension of the result given by Ha and Xiao for the 
relativistic Boltzmann equation and it is very useful for the study of the Cauchy 
problem for the relativistic Enskog equation.
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1. Introduction

We are concerned with the uniform stability of the solutions to the relativistic Enskog equation for the 
moderately or highly dense relativistic gases. The relativistic Enskog equation [24] can be written in the 
following form:

∂f

∂t
+ p

p0

∂f

∂x = Q(f, f), (1.1)

where f = f(t, x, p) denotes a distribution function of a one-particle relativistic gas with the momentum 
p ∈ R3 at the space position x ∈ R3 and the time t ∈ (0, ∞); p0 = (1 + |p|2)1/2 is the energy of a 
dimensionless relativistic gas particle with the momentum p; Q(f, f) is the relativistic Enskog collision 
operator describing the binary collision with the difference between the gain and loss terms:

Q(f, f) = Q+(f, f) −Q−(f, f). (1.2)

In order to show the two terms in (1.2), we have to use (p, p∗) and (p′, p′
∗) to represent the momenta of two 

relativistic particles immediately before collision and after collision, respectively. All the relations between 
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the momenta (p, p∗) and (p′, p′
∗) are the same as obtained for the relativistic Boltzmann equation [8]. 

Moreover, let p∗0 denote the dimensionless energy of the colliding relativistic gas particle with the momentum 
p∗ before collision, then p∗0 = (1 + |p∗|2)1/2. As used below in the same way, put p′0 = (1 + |p′|2)1/2 and 
p′∗0 = (1 + |p′

∗|2)1/2, then we know that they are respectively the dimensionless energy of the two relativistic 
particles after collision. Thus the gain and loss terms can be expressed as follows [13]:

Q+(f, f) = a2
∫

R3×S2
+

F+(f) gs
1/2

p0p∗0
σ(g, θ)f(t,x,p′)f(t,x + aω,p′

∗)dωdp∗, (1.3)

Q−(f, f) = a2
∫

R3×S2
+

F−(f) gs
1/2

p0p∗0
σ(g, θ)f(t,x,p)f(t,x − aω,p∗)dωdp∗, (1.4)

where a is the diameter of hard sphere, of course, a > 0, and the collision factors F±(f) are two nonnegative 
functionals of f . By the way, the derivation of (1.1) is analogous to that of the relativistic Boltzmann 
equation. The other different parts in (1.3) and (1.4) are explained as follows.

R3 is a three-dimensional Euclidean space and S2
+ = {ω ∈ S2 : ω(p/p0 − p∗/p∗0) ≥ 0} is a subset of the 

unit sphere surface S2 with an infinitesimal element dω = sin θdθdϕ for the scattering angle θ ∈ [0, π] and 
the other solid angle ϕ ∈ [0, 2π] in the center-of-momentum system [9,10]. s = |p∗0 + p0|2 − |p∗ + p|2 and 
s1/2 is the total energy in the center-of-mass frame; g =

√
|p∗ − p|2 − |p∗0 − p0|2/2 and 2g is in fact the 

value of the relative momentum in the center-of-mass frame [9,10]; it can be seen that s = 4 + 4g2. σ(g, θ)
is the differential scattering cross section of the variable g and the scattering angle θ, and the scattering 
angle θ is defined by

cos θ = 1 − 2[(p0 − p∗0)(p0 − p′0) − (p − p∗)(p − p′)]/(4 − s).

It is worth mentioning that gs
1/2

p0p∗0
is equal to the Moller velocity [16] defined by

vm =
√
|p/p0 − p∗/p∗0|2 − |p/p0 × p∗/p∗0|2,

which is bounded above by |p/p0 − p∗/p∗0|. Also, some estimates of s and g have been given by Glassey 
and Strauss [16] and they can be used for the relativistic Enskog equation as well.

The Enskog equation was derived by Enskog [11] in 1992 to describe the moderately or highly dense 
gases. It can be seen as a modification of the Boltzmann equation when the density of the gas increases. 
Compared with the Boltzmann equation, the Enskog equation has the extra factors F± in the collision 
operator. In general, these factors are the functionals of the density. Moreover, the collision described by 
the Enskog equation is not considered to take place at the same position for two gas particles. As we know, 
the associated collision positions are x and x + aω in (1.3), but they are x and x − aω in (1.4). Arkery 
and Cercignani [4] showed that in the classical case, if the collision factors are the same constant, then the 
solution of the Enskog equation converges to the solution of the related Boltzmann equation as the diameter 
a tends to zero. It can be proved that there is a similar result between the solutions of the relativistic Enskog 
and Boltzmann equations. Hence the relativistic Enskog equation can also be seen as a modification of the 
relativistic Boltzmann equation. The background information of the relativistic Boltzmann equation can be 
found in the work of the previous researchers, such as Andreasson [1], Bichteler [5], Glassey [14], Glassey 
and Strauss [15–17], Jiang [21–23,25] and Strain [33–35].

Now we review some previous work on the Enskog equation in both classical and relativistic cases. In 
the classical case, Lachowicz [29] first proved in 1983 that the Enskog equation admits a unique local 
solution. Polewczak [30] showed in 1989 that there exists a global solution to the Enskog equation under 
the assumption that the initial data are near vacuum data and that the collision factors satisfy the locally 
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