Analogues of the Ramanujan-Mordell theorem

Shaun Cooper ${ }^{\text {a }}$, Ben Kane ${ }^{\mathrm{b}, *, 1}$, Dongxi Ye ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Institute of Natural and Mathematical Sciences, Massey University-Albany, Private Bag 102904, North Shore Mail Centre, Auckland, New Zealand
${ }^{\text {b }}$ Department of Mathematics, University of Hong Kong, Pokfulam, Hong Kong
c Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI, 53706, USA

A R T I C L E I N F O

Article history:

Received 12 July 2016
Available online 7 September 2016
Submitted by B.C. Berndt

Keywords:

Modular forms
Ramanujan
Weakly holomorphic modular forms
Sums of squares

Abstract

The Ramanujan-Mordell Theorem for sums of an even number of squares is extended to other quadratic forms and quadratic polynomials.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

One of the classical problems in number theory is to determine exact formulas for the number of representations of a positive integer n as a sum of $2 k$ squares, which we denote by $r(2 k ; n)$. If we set

$$
\begin{equation*}
z=z(\tau):=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^{2}+n^{2}} \tag{1.1}
\end{equation*}
$$

where, here and throughout the remainder of this work, τ is a complex number with positive imaginary part and $q=e^{2 \pi i \tau}$, then (considering z as a power series in q)

$$
\sum_{n=0}^{\infty} r(2 k ; n) q^{n}=z^{k}
$$

[^0]http://dx.doi.org/10.1016/j.jmaa.2016.09.004
0022-247X /© 2016 Elsevier Inc. All rights reserved.

The function z^{k} is a modular form and it is well known that

$$
z^{k}(\tau)=E_{k}^{*}(\tau)+C_{k}(\tau)
$$

where $E_{k}^{*}(\tau)$ is an Eisenstein series and $C_{k}(\tau)$ is a cusp form. In his remarkable work, Ramanujan [24, Eqs. (145)-(147)] stated without proof explicit formulas for $E_{k}^{*}(\tau)$ and $C_{k}(\tau)$, and hence deduced the value of the coefficients $r(2 k ; n)$. Ramanujan's result was first proved by Mordell [20]. To state it we need Dedekind's eta function, which is defined by

$$
\eta(\tau):=q^{1 / 24} \prod_{j=1}^{\infty}\left(1-q^{n}\right)
$$

Here and throughout, we write η_{m} for $\eta(m \tau)$ for any positive integer m.
Theorem 1.1 (Ramanujan-Mordell). Suppose k is a positive integer. Let z be defined by (1.1). Then

$$
\begin{equation*}
z^{k}=F_{k}(\tau)+z^{k} \sum_{1 \leq j \leq \frac{(k-1)}{4}} c_{j, k} x^{j} \tag{1.2}
\end{equation*}
$$

where $c_{j, k}$ are numerical constants that depend on j and k,

$$
x=x(\tau):=\frac{\eta_{1}^{24} \eta_{4}^{24}}{\eta_{2}^{48}}
$$

and $F_{k}(\tau)$ is an Eisenstein series defined by:

$$
F_{1}(\tau):=1+4 \sum_{j=1}^{\infty} \frac{q^{j}}{1+q^{2 j}},
$$

and for $k \geq 1$,

$$
F_{2 k}(\tau):=1-\frac{4 k(-1)^{k}}{\left(2^{2 k}-1\right) \mathcal{B}_{2 k}} \sum_{j=1}^{\infty} \frac{j^{2 k-1} q^{j}}{1-(-1)^{k+j} q^{j}},
$$

and

$$
F_{2 k+1}(\tau):=1+\frac{4(-1)^{k}}{\mathcal{E}_{2 k}} \sum_{j=1}^{\infty}\left(\frac{(2 j)^{2 k} q^{j}}{1+q^{2 j}}-\frac{(-1)^{k+j}(2 j-1)^{2 k} q^{2 j-1}}{1-q^{2 j-1}}\right)
$$

Here \mathcal{B}_{k} and \mathcal{E}_{k} are the Bernoulli numbers and Euler numbers, respectively, defined by

$$
\frac{u}{e^{u}-1}=\sum_{k=0}^{\infty} \frac{\mathcal{B}_{k}}{k!} u^{k} \quad \text { and } \quad \frac{1}{\cosh u}=\sum_{k=0}^{\infty} \frac{\mathcal{E}_{k}}{k!} u^{k} .
$$

The reader is referred to [9, p. 2] for a brief account of the history of the study of Theorem 1.1 for various k.

The goal of this work is to prove the analogues of the Ramanujan-Mordell Theorem for which the quadratic form $m^{2}+n^{2}$ in (1.1) is replaced with the quadratic form $m^{2}+p n^{2}$, or by the quadratic polynomial

https://daneshyari.com/en/article/4613832

Download Persian Version:
https://daneshyari.com/article/4613832

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: s.cooper@massey.ac.nz (S. Cooper), bkane@maths.hku.hk (B. Kane), lawrencefrommath@gmail.com (D. Ye).
 ${ }^{1}$ The research of the second author was supported by grant project numbers 27300314 and 17302515 of the Research Grants Council.

