Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains

Joseph A. Iaia

P.O. Box 311430, Department of Mathematics, University of North Texas, Denton, TX 76203-1430, United States

ARTICLE INFO

Article history: Received 12 May 2016 Available online 9 September 2016 Submitted by M. Musso

Keywords: Exterior domain Superlinear Radial

ABSTRACT

In this paper we prove the existence of an infinite number of radial solutions of $\Delta u + K(r)f(u) = 0$ on the exterior of the ball of radius R centered at the origin in \mathbb{R}^N such that $\lim_{r \to \infty} u(r) = 0$ with prescribed number of zeros where $f : \mathbb{R} \to \mathbb{R}$ is odd and there exists a $\beta > 0$ with f < 0 on $(0, \beta)$, f > 0 on (β, ∞) with f superlinear for large u, and $K(r) \sim r^{-\alpha}$ with $0 < \alpha < N$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study radial solutions of:

$$\Delta u + K(|x|)f(u) = 0 \text{ for } R < |x| < \infty, \tag{1}$$

$$u(x) = 0$$
 when $|x| = R$, $\lim_{|x| \to \infty} u(x) = 0$, (2)

where $u: \mathbb{R}^N \to \mathbb{R}$ with $N \ge 2, R > 0, f$ is odd and locally Lipschitz with:

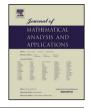
$$f'(0) < 0, \exists \beta > 0 \text{ s.t. } f(u) < 0 \text{ on } (0,\beta), \ f(u) > 0 \text{ on } (\beta,\infty).$$
(H1)

In addition, we assume:

$$f(u) = |u|^{p-1}u + g(u)$$
 where $p > 1$ and $\lim_{u \to \infty} \frac{|g(u)|}{|u|^p} = 0.$ (H2)

E-mail address: iaia@unt.edu.

 $\label{eq:http://dx.doi.org/10.1016/j.jmaa.2016.08.063} 0022-247X/\ensuremath{\odot}\xspace$ 2016 Elsevier Inc. All rights reserved.



Denoting $F(u) \equiv \int_0^u f(t) dt$ we assume:

$$\exists \gamma \text{ with } 0 < \beta < \gamma \text{ s.t. } F < 0 \text{ on } (0, \gamma) \text{ and } F > 0 \text{ on } (\gamma, \infty).$$
(H3)

Further we also assume K and K' are continuous on $[R, \infty)$ and:

$$K(r) > 0, \exists \alpha \in (0, 2(N-1)) \text{ s.t. } \lim_{r \to \infty} \frac{rK'}{K} = -\alpha, \text{ and } \exists \text{ positive } d_1, d_2$$
 (H4)

s.t.
$$2(N-1) + \frac{rK'}{K} > 0, \ d_1 r^{-\alpha} \le K(r) \le d_2 r^{-\alpha} \text{ for } r \ge R.$$
 (H5)

Main Theorem. Assuming (H1)–(H5), $N \ge 2$, and $0 < \alpha < N$ then for each nonnegative integer n there exists a radial solution, u_n , of (1)–(2) such that u_n has exactly n zeros on (R, ∞) .

The radial solutions of (1) on \mathbb{R}^N and $K(r) \equiv 1$ have been well-studied. These include [1,2,7,9,11]. Recently there has been an interest in studying these problems on $\mathbb{R}^N \setminus B_R(0)$. These include [4,5,8,10]. Here we use a scaling argument as in [9] to prove existence of solutions.

2. Preliminaries

Since we are interested in radial solutions of (1)–(2), we denote r = |x| and write u(x) = u(|x|) where u satisfies:

$$u'' + \frac{N-1}{r}u' + K(r)f(u) = 0 \text{ for } R < r < \infty,$$
(3)

$$u(R) = 0, u'(R) = b > 0.$$
(4)

We will occasionally write u(r, b) to emphasize the dependence of the solution on b. By the standard existence-uniqueness theorem [3] there is a unique solution of (3)–(4) on $[R, R + \epsilon)$ for some $\epsilon > 0$.

We next consider:

$$E(r) = \frac{1}{2} \frac{{u'}^2}{K(r)} + F(u).$$
(5)

It is straightforward using (3) and (H5) to show:

$$E'(r) = -\frac{{u'}^2}{2rK} [2(N-1) + \frac{rK'}{K}] \le 0.$$
(6)

Thus E is non-increasing. Therefore:

$$\frac{1}{2}\frac{{u'}^2}{K(r)} + F(u) = E(r) \le E(R) = \frac{1}{2}\frac{b^2}{K(R)} \text{ for } r \ge R.$$
(7)

Since F is bounded from below by (H3), it follows from (7) that u and u' are uniformly bounded wherever they are defined from which it follows that the solution of (3)-(4) is defined on $[R, \infty)$.

Lemma 2.1. Let u be the solution of (3)–(4). Assume (H1)–(H5) and $N \ge 2$. If b > 0 and b is sufficiently small then u(r) > 0 for all r > R.

Download English Version:

https://daneshyari.com/en/article/4613834

Download Persian Version:

https://daneshyari.com/article/4613834

Daneshyari.com