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In this paper we prove the existence of an infinite number of radial solutions of 
Δu + K(r)f(u) = 0 on the exterior of the ball of radius R centered at the origin in 
R

N such that lim
r→∞

u(r) = 0 with prescribed number of zeros where f : R → R is odd 
and there exists a β > 0 with f < 0 on (0, β), f > 0 on (β, ∞) with f superlinear 
for large u, and K(r) ∼ r−α with 0 < α < N .

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study radial solutions of:

Δu + K(|x|)f(u) = 0 for R < |x| < ∞, (1)

u(x) = 0 when |x| = R, lim
|x|→∞

u(x) = 0, (2)

where u : RN → R with N ≥ 2, R > 0, f is odd and locally Lipschitz with:

f ′(0) < 0, ∃β > 0 s.t. f(u) < 0 on (0, β), f(u) > 0 on (β,∞). (H1)

In addition, we assume:

f(u) = |u|p−1u + g(u) where p > 1 and lim
u→∞

|g(u)|
|u|p = 0. (H2)
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Denoting F (u) ≡
∫ u

0 f(t) dt we assume:

∃ γ with 0 < β < γ s.t. F < 0 on (0, γ) and F > 0 on (γ,∞). (H3)

Further we also assume K and K ′ are continuous on [R, ∞) and:

K(r) > 0, ∃ α ∈ (0, 2(N − 1)) s.t. lim
r→∞

rK ′

K
= −α, and ∃ positive d1, d2 (H4)

s.t. 2(N − 1) + rK ′

K
> 0, d1r

−α ≤ K(r) ≤ d2r
−α for r ≥ R. (H5)

Main Theorem. Assuming (H1)–(H5), N ≥ 2, and 0 < α < N then for each nonnegative integer n there 
exists a radial solution, un, of (1)–(2) such that un has exactly n zeros on (R, ∞).

The radial solutions of (1) on RN and K(r) ≡ 1 have been well-studied. These include [1,2,7,9,11]. 
Recently there has been an interest in studying these problems on RN\BR(0). These include [4,5,8,10]. Here 
we use a scaling argument as in [9] to prove existence of solutions.

2. Preliminaries

Since we are interested in radial solutions of (1)–(2), we denote r = |x| and write u(x) = u(|x|) where u
satisfies:

u′′ + N − 1
r

u′ + K(r)f(u) = 0 for R < r < ∞, (3)

u(R) = 0, u′(R) = b > 0. (4)

We will occasionally write u(r, b) to emphasize the dependence of the solution on b. By the standard 
existence-uniqueness theorem [3] there is a unique solution of (3)–(4) on [R, R + ε) for some ε > 0.

We next consider:

E(r) = 1
2

u′ 2

K(r) + F (u). (5)

It is straightforward using (3) and (H5) to show:

E′(r) = − u′ 2

2rK [2(N − 1) + rK ′

K
] ≤ 0. (6)

Thus E is non-increasing. Therefore:

1
2

u′ 2

K(r) + F (u) = E(r) ≤ E(R) = 1
2

b2

K(R) for r ≥ R. (7)

Since F is bounded from below by (H3), it follows from (7) that u and u′ are uniformly bounded wherever 
they are defined from which it follows that the solution of (3)–(4) is defined on [R, ∞).

Lemma 2.1. Let u be the solution of (3)–(4). Assume (H1)–(H5) and N ≥ 2. If b > 0 and b is sufficiently 
small then u(r) > 0 for all r > R.
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