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In B-splines approximation setting, it is known that monotony and convexity (or 
concavity) shapes can easily be controlled by the spline coefficients. In this paper 
we deal with the general context of combinations of localized shape constraints. We 
prove that unimodality constraint is fulfilled simply by an increasing and decreasing 
sequence of the spline coefficients by using the Descartes’ sign rule. Then, the local 
support property of B-splines is used to locate each constraint on a given interval. 
We formulate a smoothing spline approximation under inequality constraints in 
function of the spline coefficients. We also give a simulated annealing algorithm to 
solve the optimization problem and we establish the almost sure convergence of the 
efficient solution.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In various fields, some information on a function f that we aim to approximate may be known. This 
information may be related to the shape of f . The literature on approximation under shape constraints 
usually focus on a single shape restriction on the whole definition domain of f . Consider the following 
problem: given a number of observation points, find an approximation for f which is unimodal on [a, b], 
concave only on [c, b] (c ∈ ]a, b[) and twice continuously differentiable everywhere. It is worth noting that 
such a combination of constraints has never been considered in the literature on B-spline approximation 
though it seems of practical interest and realistic. In this paper we provide such an approximation. By using 
the fact that any straight line crosses the spline no more often than it crosses the control polygon, de Boor 
[4] has illustrated the property says that a spline has the same shape as its control polygon. However, the 
above works only on monotonicity and concavity (or convexity) shape constraints and cannot be applied 
to other shapes like unimodality or more sophisticated shapes. Motivated by the above idea, we generalize 
the shape preservation property to unimodality thanks to the Descartes’ sign rule. Then, by using the local 
support property of B-splines, combinations of several localized shape constraints follows immediately. The 
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present work is a contribution in which controlled mathematical localized shape constrained approximations 
are obtained for the usual constraints for a class of B-splines bases encompassing the Bernstein basis.

Furthermore, we formulate a smoothing spline approximation under inequality constraints in terms of 
the shape constraints to illustrate the idea. In a practical viewpoint, we propose a Monte Carlo simulated 
annealing scheme as a tool to solve the optimization problem. The almost sure convergence of the simulated 
annealing algorithm is proved for an inversely logarithmic temperature parameter by checking the sufficient 
conditions given by [2].

The outline of this paper is as follows: In Section 2, we give some basic definitions and results which will 
be used in the paper. In Section 3, we establish the preservation of the unimodality shape and we explain 
the concept of combinations of localized shape constraints by using the local support property of B-splines. 
In Section 4, we derive an optimization problem involving smoothing constrained spline function and we 
establish the efficient solution thanks to a simulated annealing algorithm. In Section 5, the convergence 
of the simulated annealing is proved by assuming the compactness and by taking the uniform probability 
measure. In Section 6, we conclude the results of this paper.

2. Notations and preliminaries

Some notation in this paper is as follows: we use Drf (instead of f (r)) to denote the r-th derivative of 
the function f . Let us briefly recall the definition and some properties of B-splines. The intent is to give a 
simple and direct development and for this reason B-splines will be defined via the recurrence relations. Let 
the integer (k − 1) denote the degree of the B-spline (i.e., the order is k). Given a nondecreasing sequence 
of points {ti ∈ R|ti ≤ ti+1} called knots. The vector t := (ti) is called the knot vector and some of these 
knots can be equal. In the case where � knots are equal to a real α, i.e. �i = #ti = #{tj : ti = tj = α}, we 
say that α has multiplicity �i. The B-spline function of order 1 is given by: Bi1(x) := 1 if ti ≤ x < ti+1 and 
Bi1(x) := 0 otherwise. From this first-order B-spline, we obtain higher-order B-splines by recurrence:

Bik(x) := ωik(x)Bi,k−1(x) +
(
1 − ωi+1,k(x)

)
Bi+1,k−1(x), (1)

with

ωik(x) :=
{

x−ti
ti+k−1−ti

, if ti < ti+k−1

0, otherwise.
(2)

From definitions of B-splines, a spline of order k with knot sequence t is by definition a linear combination 
of the B-splines Bik, i.e., a function of the form

fk,∞ =
∑
i

βiBik; βi ∈ R, (3)

which is a piecewise polynomial of degree (k − 1) with breakpoints ti and which is (k − 1 − �i)-times 
continuously differentiable at ti. We highlight the bi-infinite knot sequence of the B-splines by noting fk,∞
instead of fk as we assume until now that limi→±∞ ti = ±∞. This assumption is convenient since it ensures 
that every x ∈ R is in the support of some B-spline.

From now on, without loss of generality, we fix the order k > 1 and the knot sequence t. In this sense, 
we consider a finite sequence of coefficients βi, for i = 1, . . . , m. We aim to control the shape of the function 
fI =

∑m
i=1 βiBi,k defined on an interval I = [a, b] ⊆ R. To avoid any confusion in the sequel, the spline is 

denoted by fI to highlight its domain of definition I. Regarding shape constrained approximation problem, 
the B-spline basis approach turn out to be quite useful; since the B-splines B1,k, . . . , Bm,k are positive 
functions, then one can model a positive function as 

∑m
i=1 βiBi,k where βi ≥ 0 for all i. Having a model 
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