Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Baire theorem for ideals of sets $\stackrel{\Leftrightarrow}{\approx}$

A. Avilés^a, V. Kadets^b, A. Pérez^a, S. Solecki^c

^a Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain

^b Department of Mathematics and Informatics, Kharkiv V.N. Karazin National University, pl. Svobody 4, 61022 Kharkiv, Ukraine

^c Department of Mathematics, University of Illinois at Urbana-Champaign, United States

A R T I C L E I N F O

Article history: Received 13 October 2015 Available online 2 March 2016 Submitted by J.A. Ball

Keywords: Baire theorem Ideal of sets Nowhere dense Analytic set

ABSTRACT

We study ideals \mathcal{I} on \mathbb{N} satisfying the following Baire-type property: if X is a complete metric space and $\{X_A : A \in \mathcal{I}\}$ is a family of nowhere dense subsets of X with $X_A \subset X_B$ whenever $A \subset B$, then $\bigcup_{A \in \mathcal{I}} X_A \neq X$. We give several characterizations and determine the ideals having this property among certain classes like analytic ideals and P-ideals. We also discuss similar covering properties when considering families of compact and meager subsets of X.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For a given set X we denote as usual by $\mathcal{P}(X)$ the collection of all subsets of X. We call a set $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ an *ideal* if $\mathbb{N} \notin \mathcal{I}$ and given $A, B \in \mathcal{I}$ we have that $\mathcal{P}(A) \subset \mathcal{I}$ and $A \cup B \in \mathcal{I}$. A set $\beta \subset \mathcal{I}$ is a basis of \mathcal{I} if every $A \in \mathcal{I}$ is contained in some $B \in \beta$. The *character* of \mathcal{I} is the minimal cardinality of a basis of \mathcal{I} . Along this paper, every considered ideal \mathcal{I} is supposed to contain the ideal Fin of all finite subsets of \mathbb{N} .

As a dual concept, a set $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ is a *filter* on \mathbb{N} if $\{\mathbb{N} \setminus A : A \in \mathcal{F}\}$ is an ideal on \mathbb{N} , and $\beta \subset \mathcal{F}$ is called a basis of \mathcal{F} if every $A \in \mathcal{F}$ contains some $B \in \beta$. If $(x_n)_{n \in \mathbb{N}}$ is a sequence in a topological space X, then it is said to be \mathcal{F} -convergent to $a \in X$, usually written $a = \lim_{n \in \mathcal{F}} x_n$, if for every neighbourhood V of a we have that $\{n \in \mathbb{N} : x_n \in V\}$ belongs to \mathcal{F} .

Let \mathcal{F} be a filter on \mathbb{N} and let E be an arbitrary Banach space. A sequence $(e_n)_{n \in \mathbb{N}}$ in E is said to be an \mathcal{F} -basis of E if for every $x \in E$ there exists a unique sequence of scalars $(a_n)_{n \in \mathbb{N}}$ such that

 $^{^{\}pm}$ The first author was supported by MINECO and FEDER (MTM2014-54182-P) and by Fundación Séneca – Región de Murcia (19275/PI/14). The research of the second author partially was done during his stay in Murcia under the support of MINECO and FEDER projects MTM2008-05396 and MTM2011-25377. The third author was partially supported by the MINECO/FEDER project MTM2014-57838-C2-1-P and a PhD fellowship of "La Caixa Foundation". The fourth author was supported by NSF grant DMS-1266189.

E-mail addresses: avileslo@um.es (A. Avilés), v.kateds@karazin.ua (V. Kadets), antonio.perez7@um.es (A. Pérez), ssolecki@math.uiuc.edu (S. Solecki).

$$x = \lim_{n,\mathcal{F}} \sum_{i=1}^{n} a_i e_i.$$

This definition extends the notion of Schauder basis, which corresponds to the case $\mathcal{F}_{cf} := \{A \subset \mathbb{N} : \mathbb{N} \setminus A \in Fin\}$, known as the Fréchet filter. The concept of \mathcal{F} -basis was introduced in [5], but previously considered in [2] for the filter of statistical convergence

$$\mathcal{F}_{st} := \left\{ A \subset \mathbb{N} \colon \lim_{n} \frac{|A \cap \{1, \dots, n\}|}{n} = 1 \right\}.$$

It is clear from the definition of \mathcal{F} -basis that the coefficient maps $e_n^*(x) = a_n$ are linear on E. However, and in contrast with Schauder bases, it is not known whether the e_n^* 's are necessarily continuous. A partial result was given by T. Kochanek [8], who showed that if \mathcal{F} has character less than \mathfrak{p} then the answer is positive. Here \mathfrak{p} denotes the *pseudointersection number*, defined as the minimum of the cardinals κ for which the following claim is true: if \mathcal{A} is a family of subsets of \mathbb{N} with cardinality less than κ and satisfying that $\bigcap \mathcal{A}_0$ is infinite for each finite subset $\mathcal{A}_0 \subset \mathcal{A}$, then there is an infinite set $B \subset \mathbb{N}$ such that $B \setminus A$ is finite for every $A \in \mathcal{A}$.

If we work with the dual ideal \mathcal{I} associated to \mathcal{F} , a review of Kochanek's argument shows that the key step to get the result is that \mathcal{I} has the next property:

(□) If X is a complete metric space and $\{X_A : A \in \mathcal{I}\}$ is a set of meager subsets of X with $X_A \subset X_B$ whenever $A \subset B$, then $\bigcup \{X_A : A \in \mathcal{I}\} \neq X$.

Unfortunately not every ideal has this property. If the character of \mathcal{I} is less than \mathfrak{p} , then it has property (\Box) , since $\bigcup \{X_A : A \in \mathcal{I}\}$ is equal to $\bigcup \{X_B : B \in \beta\}$ which is the union of less than \mathfrak{p} meager subsets, and this is again a meager subset of X by [4, Corollary 22C]. In section 2, we show that the converse is also true under the set-theoretical assumption $\mathfrak{p} = \mathfrak{c}$.

The aim of this paper is to study what happens if we replace the condition "meager" by "nowhere dense" in (\Box) . Ideals satisfying this last property will be called *Baire ideals*. In section 3 we prove several characterizations of this type of ideals. We also show that in order to demonstrate that an ideal \mathcal{I} is a Baire ideal, we just have to check property (\Box) (with nowhere dense subsets instead of meager ones) for the metrizable space $X = D^{\mathbb{N}}$, D being the discrete space of cardinality equal to \mathfrak{c} .

The fourth section is devoted to determine which are the Baire ideals in the classes of analytic ideals and P-ideals. Here we work in ZFC without any other set-theoretical assumptions. We show that in both cases the only Baire ideals are the countably generated ideals. In contrast with this, we construct in section 5 a model of ZFC in which we can find an uncountably generated P-ideal \mathcal{I} satisfying property (\Box) for the particular case $X = 2^{\mathbb{N}}$. We also study the case of ideals generated by an almost disjoint family of subsets of \mathbb{N} .

In the last section, we show that if in (\Box) one considers compact subsets instead of meager ones, then there are uncountably generated F_{σ} ideals satisfying that property for $X = \mathbb{N}^{\mathbb{N}}$.

Our notation and terminology is standard and it is either explained when needed or can be found in [6] and [7].

2. Baire ideals

As we announced in the introduction, if we assume that $\mathfrak{p} = \mathfrak{c}$ (for instance, under Martin's Axiom), property (\Box) depends exclusively on the character of the ideal \mathcal{I} , as the following proposition shows.

Proposition 2.1. If \mathcal{I} has a basis of cardinality less than \mathfrak{p} then it has property (\Box) . If $\mathfrak{p} = \mathfrak{c}$, then the converse is true.

Download English Version:

https://daneshyari.com/en/article/4613980

Download Persian Version:

https://daneshyari.com/article/4613980

Daneshyari.com