Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Norming points and critical points

Dong Hoon Cho, Yun Sung Choi^{*,1}

Department of Mathematics, POSTECH, Pohang (790-784), Republic of Korea

ARTICLE INFO

Article history: Received 24 November 2015 Available online 17 February 2016 Submitted by J.A. Ball

This paper is dedicated to Professor Richard M. Aron

Keywords: Banach space Bishop–Phelps theorem Differentiation Critical point

1. Main results

Let X be a Banach space and S_X be its unit sphere. A continuous linear functional $f \in X^*$ is said to attain its norm if there exists $x_0 \in S_X$ such that $|f(x_0)| = ||f||$, i.e. |f| has a maximum on S_X . The point x_0 is called a "norming point" of f. The first cornerstone in studying norm-attaining linear functionals is James' characterization [8] of a reflexive Banach space, which says that every continuous linear functional on X attains its norm if and only if X is reflexive. After the celebrated Bishop–Phelps theorem [3], "for a Banach space X, the set of all norm-attaining linear functionals is dense in X^* " appeared in 1961, a lot of attention has been paid to the study of this property for linear operators between Banach spaces.

In this short paper we want to show that a norming point $x_0 \in S_X$ of f is a critical point of f, that is, $f'(x_0) = 0$. However, from the concept of the Frechét differentiation of f we have $f'(x_0) = f$. Hence we introduce a concept of the differentiation of a function f defined on S_X , which is compatible with the differentiation on a manifold.

We now assume that X is a Banach space with a C^p smooth norm $(1 \le p \le \infty)$. For every $z \in S_X$, we denote by H_{-z} the hyperplane tangent to S_X at -z. Let π_z be the stereographic projection from $S_X \setminus \{z\}$

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2016.02.030

ABSTRACT

Using a diffeomorphism between the unit sphere and a closed hyperplane of an infinite dimensional Banach space, we introduce the differentiation of a function defined on the unit sphere, and show that a continuous linear functional attains its norm if and only if it has a critical point on the unit sphere. Furthermore, we provide a strong version of the Bishop–Phelps–Bollobás theorem for a Lipschitz smooth Banach space.

© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: meimi200@postech.ac.kr (D.H. Cho), mathchoi@postech.ac.kr (Y.S. Choi).

 $^{^1}$ The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A09059788 and NRF-2013053914).

⁰⁰²²⁻²⁴⁷X/© 2016 Elsevier Inc. All rights reserved.

onto H_{-z} . The desired manifold structure on S_X is defined by the family $\{\pi_z \mid z \in S_X\}$. It is easily checked that S_X is a C^p submanifold, modelled on a codimension one, closed linear subspace X_0 of X [10, II, §2, Example]. Let Ψ be a diffeomorphism from a closed hyperplane H of a Banach space X onto S_X . For $f: S_X \to \mathbb{R}$ we define $Df_{\Psi}: S_X \to H^*$ by $Df_{\Psi}(u)(h) := D(f \circ \Psi)(\Psi^{-1}(u))(h)$ for $u \in S_X$ and $h \in H$, where D is the Frechét differentiation. We say that f has a "critical point" at $u \in S_X$ if $Df_{\Psi}(u) = 0$ for some diffeomorphism Ψ from a closed hyperplane H of a Banach space X onto S_X .

For its well-definedness, it is easy to check that given diffeomorphisms $\Psi_1 : H_1 \to S_X$ and $\Psi_2 : H_2 \to S_X$, $Df_{\Psi_1}(u) = 0$ if and only if $Df_{\Psi_2}(u) = 0$. Indeed,

$$D(f \circ \Psi_1)(\Psi_1^{-1}(u)) = D(f \circ \Psi_2 \circ \Psi_2^{-1} \circ \Psi_1)(\Psi_1^{-1}(u))$$

= $D(f \circ \Psi_2)(\Psi_2^{-1}(u)) \circ D(\Psi_2^{-1} \circ \Psi_1)(\Psi_1^{-1}(u)).$

Since $\Psi_2^{-1} \circ \Psi_1$ is a diffeomorphism, $D(\Psi_2^{-1} \circ \Psi_1)(\Psi_1^{-1}(u)) \in \mathcal{L}(H_1, H_2)$ is an isomorphism.

In 1966, C. Bessaga [2] proved that every infinite dimensional Hilbert space is C^{∞} diffeomorphic to its unit sphere. By improving Bessaga's non-complete technique, H.T. Dobrowolski [5] proved in 1979 that every infinite dimensional Banach space X which is linearly injectable into some $c_0(\Gamma)$ is C^{∞} diffeomorphic to $X \setminus \{0\}$. More generally, Azagra [1] showed the following result in 1997.

Theorem 1.1. (See [1, Theorem 1].) Let X be an infinite dimensional Banach space with a C^p smooth norm, where $p \in \mathbb{N} \cup \{\infty\}$. Then for every closed hyperplane H in X, there exists a C^p diffeomorphism between S_X and H.

From now on, let Ψ denote the C^p diffeomorphism from H onto S_X given in the above theorem.

Theorem 1.2. Let X be an infinite dimensional Banach space with a C^p smooth norm $(1 \le p \le \infty)$. Then $f \in S_{X^*}$ attains its norm at $u \in S_X$ if and only if $f|_{S_X}$ has a critical point at $u \in S_X$.

Proof. Suppose f attains its norm at $u \in S_X$. For each vector $h \in H$, ||h|| = 1 we define $g : \mathbb{R} \to \mathbb{R}$ by $g(\lambda) = f \circ \Psi(\lambda h + \Psi^{-1}(u))$. Then it is clear that g is differentiable on \mathbb{R} and also attains either a maximum or a minimum at $\lambda = 0$. Hence $g'(0) = 0 = D(f \circ \Psi)(\Psi^{-1}(u))(h)$, which implies that $Df_{\Psi}(u) = 0$.

For the proof of the other implication it is enough to show that if $0 \leq f(x_1) < 1$ at $x_1 \in S_X$, then $Df_{\Psi}(x_1) \neq 0$. Choose $x_2 \in S_X$ with $f(x_2) > f(x_1)$ and define $\gamma : [0, 1] \to H$ by

$$\gamma(s) := \Psi^{-1} \left(\frac{x_1 + s(x_2 - x_1)}{\|x_1 + s(x_2 - x_1)\|} \right).$$

Since $s \mapsto \left(\frac{x_1+s(x_2-x_1)}{\|x_1+s(x_2-x_1)\|}\right)$ is C^p , so is $\gamma(s)$. We first want to show that

$$0 < \lim_{s \to 0^+} \frac{f(\Psi \circ \gamma(s)) - f(x_1)}{\|\Psi \circ \gamma(s) - x_1\|}.$$

Since $||x_1 + s(x_2 - x_1)|| \le 1$ for $s \in [0, 1]$, it follows that

$$sf(x_2 - x_1) = f(x_1 + s(x_2 - x_1)) - f(x_1) \le f(\Psi \circ \gamma(s)) - f(x_1).$$

Put $z = s(x_2 - x_1)$, and we have

$$\begin{split} \|\Psi \circ \gamma(s) - x_1\| &= \left\| \frac{x_1 + z - x_1 \|x_1 + z\|}{\|x_1 + z\|} \right\| = \left\| \frac{(x_1 + z)(1 - \|x_1 + z\|) + z\|x_1 + z\|}{\|x_1 + z\|} \right\| \\ &\leq |1 - \|x_1 + z\|| + \|z\| \leq 2\|z\| = 2s\|x_2 - x_1\|. \end{split}$$

Download English Version:

https://daneshyari.com/en/article/4613986

Download Persian Version:

https://daneshyari.com/article/4613986

Daneshyari.com