

Inequalities for generalized Euclidean operator radius via Young's inequality

Alemeh Sheikhhosseini ${ }^{\text {a }}$, Mohammad Sal Moslehian ${ }^{\text {b,* }}$, Khalid Shebrawi ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
b Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran
c Department of Mathematics, Al-Balqa' Applied University, Salt, Jordan

A R T I C L E I N F O

Article history:

Received 19 November 2015
Available online 1 April 2016
Submitted by D. Ryabogin
This paper is dedicated to Professor Richard M. Aron

Keywords:

Young inequality
Generalized Euclidean operator radius
Inequality
Numerical range

ABSTRACT
Using a refinement of the classical Young inequality, we refine some inequalities of
operators including the function ω_{p}, where ω_{p} is defined for $p \geqslant 1$ and operators $T_{1}, \ldots, T_{n} \in \mathbb{B}(\mathscr{H})$ by

$$
\omega_{p}\left(T_{1}, \ldots, T_{n}\right):=\sup _{\|x\|=1}\left(\sum_{i=1}^{n}\left|\left\langle T_{i} x, x\right\rangle\right|^{p}\right)^{\frac{1}{p}}
$$

Among other things, we show that if $T_{1}, \ldots, T_{n} \in \mathbb{B}(\mathscr{H})$ and $p \geq q \geq 1$ with $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{aligned}
\frac{1}{n}\left\|\sum_{i=1}^{n} T_{i}\right\|^{2} & \leq \omega_{p}\left(\left|T_{1}\right|, \ldots,\left|T_{n}\right|\right) \omega_{q}\left(\left|T_{1}^{*}\right|, \ldots,\left|T_{n}^{*}\right|\right) \\
& \leq \frac{1}{p}\left\|\sum_{i=1}^{n}\left|T_{i}\right|^{p}\right\|+\frac{1}{q}\left\|\sum_{i=1}^{n}\left|T_{i}^{*}\right|^{q}\right\|-\inf _{\|x\|=\|y\|=1} \delta(x, y),
\end{aligned}
$$

where $\delta(x, y)=\frac{1}{p}\left(\sqrt{\sum_{i=1}^{n}\langle | T_{i}|x, x\rangle^{p}}-\sqrt{\sum_{i=1}^{n}\langle | T_{i}^{*}|y, y\rangle^{q}}\right)^{2}$.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{B}(\mathscr{H})$ denote the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathscr{H} with an inner product $\langle\cdot \cdot \cdot\rangle$ and the corresponding norm $\|$.$\| . In the case when \operatorname{dim} \mathscr{H}=n$, we identify $\mathbb{B}(\mathscr{H})$ with

[^0]the matrix algebra \mathbb{M}_{n} of all $n \times n$ matrices with entries in the complex field. The numerical range of an operator $A \in \mathbb{B}(\mathscr{H})$ is defined by $W(A)=\{\langle A x, x\rangle: x \in \mathscr{H},\|x\|=1\}$. For any $A \in \mathbb{B}(\mathscr{H}), \overline{W(A)}$ is a convex subset of the complex plane containing the spectrum of A; see $[3,4,14]$ for more information.

The numerical radius of $A \in \mathbb{B}(\mathscr{H})$ is defined by

$$
\omega(A)=\sup \{|\lambda|: \lambda \in W(A)\} .
$$

It is known that $\omega(\cdot)$ is a norm on \mathbb{M}_{n}, but it is not unitarily invariant. The quantity $\omega(A)$ is useful in studying perturbation, convergence and approximation problems as well as iterative method, etc. For more information see $[2,9]$.

For positive real numbers a, b, the classical Young inequality says that if $p, q>1$ such that $1 / p+1 / q=1$, then

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} .
$$

A refinement of the scalar Young inequality is presented in [8] as follows:

$$
\begin{equation*}
a b+r_{0}\left(a^{p / 2}-b^{q / 2}\right)^{2} \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}, \tag{1.1}
\end{equation*}
$$

where $r_{0}=\min \{1 / p, 1 / q\}$. Recently, Al-Manasrah and Kittaneh [1] generalized inequality (1.1) to

$$
\begin{equation*}
\left(a^{\frac{1}{p}} \frac{1}{q}^{\frac{1}{q}}\right)^{m}+r_{0}^{m}\left(a^{\frac{m}{2}}-b^{\frac{m}{2}}\right)^{2} \leq\left(\frac{a}{p}+\frac{b}{q}\right)^{m}, \tag{1.2}
\end{equation*}
$$

where $m=1,2, \ldots$; see also [12]. Furthermore, it is known that for $r \geq 1$,

$$
\begin{equation*}
\left(\frac{a}{p}+\frac{b}{q}\right)^{m} \leq\left(\frac{a^{r}}{p}+\frac{b^{r}}{q}\right)^{\frac{m}{r}} \tag{1.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left(a^{\frac{1}{p}} b^{\frac{1}{q}}\right)^{m}+r_{0}^{m}\left(a^{\frac{m}{2}}-b^{\frac{m}{2}}\right)^{2} \leq\left(\frac{a^{r}}{p}+\frac{b^{r}}{q}\right)^{\frac{m}{r}} . \tag{1.4}
\end{equation*}
$$

In particular, if $p=q=2$, then

$$
\begin{equation*}
\left(a^{\frac{1}{2}} b^{\frac{1}{2}}\right)^{m}+\frac{1}{2^{m}}\left(a^{\frac{m}{2}}-b^{\frac{m}{2}}\right)^{2} \leq 2^{\frac{-m}{r}}\left(a^{r}+b^{r}\right)^{\frac{m}{r}} . \tag{1.5}
\end{equation*}
$$

Let $T_{1}, \ldots, T_{n} \in \mathbb{B}(\mathscr{H})$. The Euclidean operator radius of T_{1}, \ldots, T_{n} is defined in [11] by

$$
\omega_{e}\left(T_{1}, \ldots, T_{n}\right):=\sup _{\|x\|=1}\left(\sum_{i=1}^{n}\left|\left\langle T_{i} x, x\right\rangle\right|^{2}\right)^{\frac{1}{2}} .
$$

In addition, the functional ω_{p} of operators T_{1}, \ldots, T_{n} for $p \geqslant 1$ is defined in [13] by

$$
\omega_{p}\left(T_{1}, \ldots, T_{n}\right):=\sup _{\|x\|=1}\left(\sum_{i=1}^{n}\left|\left\langle T_{i} x, x\right\rangle\right|^{p}\right)^{\frac{1}{p}} .
$$

The authors of [13] obtained some inequalities for $\omega_{p}(B, C)$ of two bounded linear operators in $\mathbb{B}(\mathscr{H})$ and found some upper bounds for $\omega_{p}\left(T_{1}, \ldots, T_{n}\right)$.

https://daneshyari.com/en/article/4614002

Download Persian Version:
https://daneshyari.com/article/4614002

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: sheikhhosseini@uk.ac.ir (A. Sheikhhosseini), moslehian@um.ac.ir (M.S. Moslehian), khalid@bau.edu.jo (K. Shebrawi).

