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Using a refinement of the classical Young inequality, we refine some inequalities of 
operators including the function ωp, where ωp is defined for p � 1 and operators 
T1, . . . , Tn ∈ B(H ) by

ωp(T1, . . . , Tn) := sup
‖x‖=1

(
n∑

i=1
| 〈Tix, x〉 |p

) 1
p

.

Among other things, we show that if T1, . . . , Tn ∈ B(H ) and p ≥ q ≥ 1 with 
1
p

+ 1
q

= 1, then

1
n
‖

n∑
i=1

Ti‖2 ≤ ωp(|T1|, . . . , |Tn|)ωq(|T ∗
1 |, . . . , |T ∗

n |)

≤ 1
p
‖

n∑
i=1

|Ti|p‖ +
1
q
‖

n∑
i=1

|T ∗
i |q‖ − inf

‖x‖=‖y‖=1
δ(x, y),

where δ(x, y) = 1
p
(
√∑n

i=1〈|Ti|x, x〉p −
√∑n

i=1〈|T ∗
i |y, y〉q)2.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space H with an 
inner product 〈·,·〉 and the corresponding norm ‖.‖. In the case when dimH = n, we identify B(H ) with 
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the matrix algebra Mn of all n × n matrices with entries in the complex field. The numerical range of an 
operator A ∈ B(H ) is defined by W (A) = {〈Ax, x〉 : x ∈ H , ‖x‖ = 1}. For any A ∈ B(H ), W (A) is a 
convex subset of the complex plane containing the spectrum of A; see [3,4,14] for more information.

The numerical radius of A ∈ B(H ) is defined by

ω(A) = sup{|λ| : λ ∈ W (A)}.

It is known that ω(·) is a norm on Mn, but it is not unitarily invariant. The quantity ω(A) is useful in 
studying perturbation, convergence and approximation problems as well as iterative method, etc. For more 
information see [2,9].

For positive real numbers a, b, the classical Young inequality says that if p, q > 1 such that 1/p +1/q = 1, 
then

ab ≤ ap

p
+ bq

q
.

A refinement of the scalar Young inequality is presented in [8] as follows:

ab + r0(ap/2 − bq/2)2 ≤ ap

p
+ bq

q
, (1.1)

where r0 = min{1/p, 1/q}. Recently, Al-Manasrah and Kittaneh [1] generalized inequality (1.1) to

(
a

1
p b

1
q

)m
+ rm0

(
a

m
2 − b

m
2
)2 ≤

(
a

p
+ b

q

)m

, (1.2)

where m = 1, 2, . . . ; see also [12]. Furthermore, it is known that for r ≥ 1,

(
a

p
+ b

q

)m

≤
(
ar

p
+ br

q

)m
r

. (1.3)

Thus

(
a

1
p b

1
q

)m
+ rm0

(
a

m
2 − b

m
2
)2 ≤

(
ar

p
+ br

q

)m
r

. (1.4)

In particular, if p = q = 2, then
(
a

1
2 b

1
2

)m
+ 1

2m (am
2 − b

m
2 )2 ≤ 2

−m
r (ar + br)

m
r . (1.5)

Let T1, . . . , Tn ∈ B(H ). The Euclidean operator radius of T1, . . . , Tn is defined in [11] by

ωe(T1, . . . , Tn) := sup
‖x‖=1

(
n∑

i=1
| 〈Tix, x〉 |2

) 1
2

.

In addition, the functional ωp of operators T1, . . . , Tn for p � 1 is defined in [13] by

ωp(T1, . . . , Tn) := sup
‖x‖=1

(
n∑

i=1
| 〈Tix, x〉 |p

) 1
p

.

The authors of [13] obtained some inequalities for ωp(B, C) of two bounded linear operators in B(H ) and 
found some upper bounds for ωp(T1, . . . , Tn).
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