Corrigendum

Corrigendum to "Singular integral operators along surfaces of revolution" [J. Math. Anal. Appl. 274 (2) (2002) 608-625]

Hung Viet Le
APU International School, 286 Lanh Binh Thang, Ward 11, District 11, Ho Chi Minh City, Viet Nam

A R T I C L E I N F O

Article history:

Received 12 March 2016
Available online 11 May 2016
Submitted by R.H. Torres

Keywords:

Singular integrals
Maximal functions
Hardy spaces
Fourier transform

Abstract

One of the key estimates in the original paper [3] does not seem to hold true, which may invalidate some results of that paper. However, there is a couple of ways to fix this mistake by adding additional hypotheses in Theorem 1 [3].

© 2016 Elsevier Inc. All rights reserved.

In the proof of Theorem 1 [3], both inequalities

$$
\begin{equation*}
\left|\widehat{\sigma}_{k}\left(\zeta, \zeta_{n+1}\right)\right| \leq C\left|2^{d k} A_{\rho} \zeta\right| \tag{0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\widehat{\mu}_{k}\left(\zeta, \zeta_{n+1}\right)-\widehat{\mu}_{k}\left(0, \zeta_{n+1}\right)\right| \leq C\left|2^{k d} A_{\rho} \zeta\right| \tag{0.2}
\end{equation*}
$$

rely on the estimate

$$
\begin{equation*}
\int_{\zeta_{1}^{\prime}-3 r}^{\zeta_{1}^{\prime}+3 r}|s| d s \leq C r^{2}, \quad \text { where } r \equiv r\left(\zeta^{\prime}\right)=\rho \sqrt{\left(\rho \zeta_{1}^{\prime}\right)^{2}+\left(\zeta_{2}^{\prime}\right)^{2}+\cdots+\left(\zeta_{n}^{\prime}\right)^{2}} ; \quad\left(\zeta_{1}^{\prime}, \ldots, \zeta_{n}^{\prime}\right) \in S^{n-1} \tag{0.3}
\end{equation*}
$$

Unfortunately, inequality (0.3) may not hold true unless $\left|\zeta_{1}^{\prime}\right| \leq C r\left(\zeta^{\prime}\right)$.

[^0]Inequality (0.1) still holds true by properly using the cancellation property of $F_{a}\left(s, \zeta^{\prime}\right)$ as follows:

$$
\begin{aligned}
\left|\widehat{\sigma}_{k}\left(\zeta, \zeta_{n+1}\right)\right| & =\left|\int_{2^{k}}^{2^{k+1}} \frac{h(t)}{t} e^{i \zeta_{n+1} \gamma(t)} \int\left(e^{i|\zeta| \phi(t) s}-e^{i|\zeta| \phi(t) \zeta_{1}^{\prime}}\right) F_{a}\left(s, \zeta^{\prime}\right) d s d t\right| \\
& \leq\left\{\int_{2^{k}}^{2^{k+1}}|\zeta||h(t) \phi(t)| \frac{d t}{t}\right\}\left\{\int\left|\left(s-\zeta_{1}^{\prime}\right) F_{a}\left(s, \zeta^{\prime}\right)\right| d s\right\} \\
& \leq C\left|2^{d k} \zeta\right| r^{-1} \int_{\zeta_{1}^{\prime}-3 r}^{\zeta_{1}^{\prime}+3 r}\left|s-\zeta_{1}^{\prime}\right| d s \\
& \leq C\left|2^{d k} r \zeta\right|=C\left|2^{d k} A_{\rho} \zeta\right|
\end{aligned}
$$

On the other hand, it seems to be impossible to obtain inequality (0.2) due to the presence of ζ_{1}^{\prime}. Note that inequality (0.2) was needed in [3] to obtain the L^{p}-boundedness $(1<p<\infty)$ of $\sup _{k \in \mathbb{Z}}\left|\mu_{k} * f\right|$ via Theorem C^{*} in [3]. We can still obtain the L^{p}-boundedness of $\sup _{k \in \mathbb{Z}}\left|\mu_{k} * f\right|$ by a different technique and by requiring additional hypotheses on γ. We now proceed its proof below.

Recall from [3] that

$$
\begin{aligned}
\left(\mu_{k} * f\right)\left(x, x_{n+1}\right) & =\int_{|y| \simeq_{2} k} \frac{\left|h(|y|) a\left(y^{\prime}\right)\right|}{|y|^{n}} f\left(x-\phi(|y|) y^{\prime}, x_{n+1}-\gamma(|y|)\right) d y \\
& \leq C \int_{|y| 2^{k}} \frac{\left|a\left(y^{\prime}\right)\right|}{|y|^{n}} f\left(x-\phi(|y|) y^{\prime}, x_{n+1}-\gamma(|y|)\right) d y \\
& \equiv C\left(\nu_{k} * f\right)\left(x, x_{n+1}\right)
\end{aligned}
$$

where the inequality follows from the assumption that the function h is bounded almost everywhere. Thus, it suffices to prove that $\sup _{k \in \mathbb{Z}}\left|\nu_{k} * f\right|$ is bounded on $L^{p}\left(\mathbb{R}^{n+1}\right)$ for $1<p<\infty$. By the method of rotation, it is enough to prove the L^{p}-boundedness $(1<p<\infty)$ of the following two-dimensional maximal function

$$
M g\left(x_{1}, x_{2}\right)=\sup _{k \in \mathbb{Z}}\left\{\frac{1}{2^{k}} \int_{2^{k}}^{2^{k+1}}\left|g\left(x_{1}-\phi(t), x_{2}-\gamma(t)\right)\right| d t\right\} .
$$

We will apply Theorem C [1] to prove. We may assume that $g \geq 0$. Define the positive, finite Borel measures $\left\{\lambda_{k}\right\}_{k \in \mathbb{Z}}$ as

$$
\left(\lambda_{k} * g\right)\left(x_{1}, x_{2}\right)=\frac{1}{2^{k}} \int_{2^{k}}^{2^{k+1}} g\left(x_{1}-\phi(t), x_{2}-\gamma(t)\right) d t
$$

In terms of Fourier transform,

$$
\hat{\lambda_{k}}\left(\zeta_{1}, \zeta_{2}\right)=\frac{1}{2^{k}} \int_{2^{k}}^{2^{k+1}} e^{i \zeta_{1} \phi(t)} e^{i \zeta_{2} \gamma(t)} d t
$$

https://daneshyari.com/en/article/4614034

Download Persian Version:
https://daneshyari.com/article/4614034

Daneshyari.com

[^0]: DOI of original article: http://dx.doi.org/10.1016/S0022-247X(02)00316-5.
 E-mail address: hvle2008@yahoo.com.

