

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

An ergodic value distribution of certain meromorphic functions

Junghun Lee, Ade Irma Suriajaya*

Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

ARTICLE INFO

Article history: Received 16 March 2016 Available online 2 August 2016 Submitted by Richard M. Aron

Keywords: Lindelöf hypothesis Birkhoff's ergodic theorem Zeta function L-function Derivative

ABSTRACT

We calculate a certain mean-value of meromorphic functions by using specific ergodic transformations, which we call affine Boolean transformations. We use Birkhoff's ergodic theorem to transform the mean-value into a computable integral which allows us to completely determine the mean-value of this ergodic type. As examples, we introduce some applications to zeta functions and *L*-functions. We also prove an equivalence of the Lindelöf hypothesis of the Riemann zeta function in terms of its certain ergodic value distribution associated with affine Boolean transformations

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In [7], M. Lifshits and M. Weber investigated the value distribution of the Riemann zeta function $\zeta(s)$ by using the Cauchy random walk. They proved that almost surely

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \zeta\left(\frac{1}{2} + iS_n\right) = 1 + o\left(\frac{(\log N)^b}{N^{1/2}}\right)$$

holds for any b > 2 where $\{S_n\}_{n=1}^{\infty}$ is the Cauchy random walk. This result implies that most of the values of $\zeta(s)$ on the critical line are quite small. Analogous to [7], T. Srichan investigated the value distributions of Dirichlet L-functions and Hurwitz zeta functions by using the Cauchy random walk in [9].

The first approach to investigate the ergodic value distribution of $\zeta(s)$ was done by J. Steuding. In [11], he studied the ergodic value distribution of $\zeta(s)$ on vertical lines under the Boolean transformation. The notion of Boolean transformation comes from the following formula due to Boole

E-mail addresses: m12003v@math.nagoya-u.ac.jp (J. Lee), m12026a@math.nagoya-u.ac.jp (A.I. Suriajaya).

^{*} The first named author is supported by JSPS KAKENHI Grant Number 16J01139. The second named author is supported by JSPS KAKENHI Grant Number 15J02325.

^{*} Corresponding author.

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} f\left(x - \frac{1}{x}\right)dx$$

which is valid for any integrable function f and was later studied by Glaisher. We refer to (1) in R.L. Adler and B. Weiss [1].

We are interested in studying the ergodic value distribution of a larger class of meromorphic functions which includes but is not limited to the Selberg class (of ζ -functions and L-functions) and their derivatives, on vertical lines under more general Boolean transformations, which we shall call *affine Boolean transformation* $T_{\alpha,\beta}: \mathbb{R} \to \mathbb{R}$ given by

$$T_{\alpha,\beta}(x) := \begin{cases} \frac{\alpha}{2} \left(\frac{x+\beta}{\alpha} - \frac{\alpha}{x-\beta} \right), & x \neq \beta; \\ \beta, & x = \beta \end{cases}$$
 (1.1)

for an $\alpha > 0$ and a $\beta \in \mathbb{R}$. Below is our main theorem. For a given $c \in \mathbb{R}$, we shall denote by \mathbb{H}_c and \mathbb{L}_c the half-plane $\{z \in \mathbb{C} \mid \text{Re}(z) > c\}$ and the line $\{z \in \mathbb{C} \mid \text{Re}(z) = c\}$.

Theorem 1.1. Let f be a meromorphic function on \mathbb{H}_c satisfying the following conditions.

(1) There exists an M > 0 and a c' > c such that for any $t \in \mathbb{R}$, we have

$$|f(\{\sigma + it \mid \sigma > c'\})| \le M.$$

- (2) There exists a non-increasing continuous function $\nu:(c,\infty)\to\mathbb{R}$ such that if σ is sufficiently near c then $\nu(\sigma)\leq 1+c-\sigma$, and that for any small $\epsilon>0$, $f(\sigma+it)\ll_{f,\epsilon}|t|^{\nu(\sigma)+\epsilon}$ as $|t|\to\infty$.
- (3) f has at most one pole of order m in \mathbb{H}_c at $s = s_0 = \sigma_0 + it_0$, that is, we can write its Laurent expansion near $s = s_0$ as

$$\frac{a_{-m}}{(s-s_0)^m} + \frac{a_{-(m-1)}}{(s-s_0)^{m-1}} + \dots + \frac{a_{-1}}{s-s_0} + a_0 + \sum_{n=1}^{\infty} a_n (s-s_0)^n$$
(1.2)

for $m \geq 0$, where we set m = 0 if f has no pole in \mathbb{H}_c .

Then for any $s \in \mathbb{H}_c \backslash \mathbb{L}_{\sigma_0}$, we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(s + iT_{\alpha,\beta}^n x\right) = \frac{\alpha}{\pi} \int_{\mathbb{R}} \frac{f(s+i\tau)}{\alpha^2 + (\tau - \beta)^2} d\tau \tag{1.3}$$

for almost all $x \in \mathbb{R}$.

We denote the right-hand side of the above formula by $l_{\alpha,\beta}(s)$. If f has no pole in \mathbb{H}_c ,

$$l_{\alpha\beta}(s) = f(s + \alpha + i\beta) \tag{1.4}$$

for all $s \in \mathbb{H}_c$. If f has a pole at $s = s_0 = \sigma_0 + it_0$,

$$l_{\alpha,\beta}(s) = \begin{cases} f(s+\alpha+i\beta) + B_m(s_0), & c < \operatorname{Re}(s) < \sigma_0, s \neq s_0 - \alpha - i\beta; \\ \sum_{m=0}^{m} \frac{a_{-n}}{(-2\alpha)^n}, & c < \operatorname{Re}(s) < \sigma_0, s = s_0 - \alpha - i\beta; \\ f(s+\alpha+i\beta), & \operatorname{Re}(s) > \sigma_0; \end{cases}$$
(1.5)

Download English Version:

https://daneshyari.com/en/article/4614046

Download Persian Version:

https://daneshyari.com/article/4614046

<u>Daneshyari.com</u>