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which allows us to completely determine the mean-value of this ergodic type. As
examples, we introduce some applications to zeta functions and L-functions. We

]'_}iiyd?gfg‘fd fl'ypothesis also prove an equivalence of the Lindelof hypothesis of the Riemann zeta function
BirkhofP’s ergodic theorem in terms of its certain ergodic value distribution associated with affine Boolean
Zeta function transformations.
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1. Introduction

In [7], M. Lifshits and M. Weber investigated the value distribution of the Riemann zeta function ((s)
by using the Cauchy random walk. They proved that almost surely

1o (1 log N)°
ngnooﬁglc (2 +iSn) = 1+0(( ]51/2) )
holds for any b > 2 where {5, }52; is the Cauchy random walk. This result implies that most of the values
of {(s) on the critical line are quite small. Analogous to [7], T. Srichan investigated the value distributions
of Dirichlet L-functions and Hurwitz zeta functions by using the Cauchy random walk in [9].

The first approach to investigate the ergodic value distribution of {(s) was done by J. Steuding. In [11],
he studied the ergodic value distribution of ((s) on vertical lines under the Boolean transformation. The
notion of Boolean transformation comes from the following formula due to Boole
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which is valid for any integrable function f and was later studied by Glaisher. We refer to (1) in R.L. Adler
and B. Weiss [1].

We are interested in studying the ergodic value distribution of a larger class of meromorphic functions
which includes but is not limited to the Selberg class (of {-functions and L-functions) and their derivatives,
on vertical lines under more general Boolean transformations, which we shall call affine Boolean transfor-
mation T, g : R — R given by
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for an a > 0 and a 8 € R. Below is our main theorem. For a given ¢ € R, we shall denote by H, and LL. the
half-plane {z € C | Re(z) > ¢} and the line {z € C | Re(z) = c}.
Theorem 1.1. Let f be a meromorphic function on H, satisfying the following conditions.
(1) There exists an M > 0 and a ¢ > ¢ such that for any t € R, we have
[f{o+it] o>} <M.

(2) There exists a non-increasing continuous function v : (¢,00) — R such that if o is sufficiently near ¢
then v(o) < 1+ c— o, and that for any small € > 0, f(o +it) <y [t[/(DF€ as |t| — 0.

(3) f has at most one pole of order m in H. at s = sg = o¢ +ity, that is, we can write its Laurent expansion
near s = sg as

P S =
for m >0, where we set m =0 if f has no pole in H..
Then for any s € Hc\Ly,, we have
N-1 .
Jm Z_% f(s+iT2 5) = & / asz(jfgyd (13)
n= R
for almost all x € R.
We denote the right-hand side of the above formula by Iy g(s). If f has no pole in H,
lag(s) = f(s+a+ip) (1.4)
for all s € H.. If f has a pole at s = sg = og + ityg,
f(s+a+iB)+ Bm(so), c¢<Re(s)<og,s#s)—a—1if;
lop(s) = nﬁ; (_(12_07)71, ¢ < Re(s) < 09,8 =59 — a—1if; (1.5)

fls+a+1ip), Re(s) > op;



Download English Version:

https://daneshyari.com/en/article/4614046

Download Persian Version:

https://daneshyari.com/article/4614046

Daneshyari.com


https://daneshyari.com/en/article/4614046
https://daneshyari.com/article/4614046
https://daneshyari.com

