

An ergodic value distribution of certain meromorphic functions **

Junghun Lee, Ade Irma Suriajaya*
Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

A R T I C L E IN F O

Article history:

Received 16 March 2016
Available online 2 August 2016
Submitted by Richard M. Aron

Keywords:

Lindelöf hypothesis
Birkhoff's ergodic theorem
Zeta function
L-function
Derivative

Abstract

We calculate a certain mean-value of meromorphic functions by using specific ergodic transformations, which we call affine Boolean transformations. We use Birkhoff's ergodic theorem to transform the mean-value into a computable integral which allows us to completely determine the mean-value of this ergodic type. As examples, we introduce some applications to zeta functions and L-functions. We also prove an equivalence of the Lindelöf hypothesis of the Riemann zeta function in terms of its certain ergodic value distribution associated with affine Boolean transformations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In [7], M. Lifshits and M. Weber investigated the value distribution of the Riemann zeta function $\zeta(s)$ by using the Cauchy random walk. They proved that almost surely

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \zeta\left(\frac{1}{2}+i S_{n}\right)=1+o\left(\frac{(\log N)^{b}}{N^{1 / 2}}\right)
$$

holds for any $b>2$ where $\left\{S_{n}\right\}_{n=1}^{\infty}$ is the Cauchy random walk. This result implies that most of the values of $\zeta(s)$ on the critical line are quite small. Analogous to [7], T. Srichan investigated the value distributions of Dirichlet L-functions and Hurwitz zeta functions by using the Cauchy random walk in [9].

The first approach to investigate the ergodic value distribution of $\zeta(s)$ was done by J. Steuding. In [11], he studied the ergodic value distribution of $\zeta(s)$ on vertical lines under the Boolean transformation. The notion of Boolean transformation comes from the following formula due to Boole

[^0]$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} f\left(x-\frac{1}{x}\right) d x
$$
which is valid for any integrable function f and was later studied by Glaisher. We refer to (1) in R.L. Adler and B. Weiss [1].

We are interested in studying the ergodic value distribution of a larger class of meromorphic functions which includes but is not limited to the Selberg class (of ζ-functions and L-functions) and their derivatives, on vertical lines under more general Boolean transformations, which we shall call affine Boolean transformation $T_{\alpha, \beta}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
T_{\alpha, \beta}(x):= \begin{cases}\frac{\alpha}{2}\left(\frac{x+\beta}{\alpha}-\frac{\alpha}{x-\beta}\right), & x \neq \beta \tag{1.1}\\ \beta, & x=\beta\end{cases}
$$

for an $\alpha>0$ and a $\beta \in \mathbb{R}$. Below is our main theorem. For a given $c \in \mathbb{R}$, we shall denote by \mathbb{H}_{c} and \mathbb{L}_{c} the half-plane $\{z \in \mathbb{C} \mid \operatorname{Re}(z)>c\}$ and the line $\{z \in \mathbb{C} \mid \operatorname{Re}(z)=c\}$.

Theorem 1.1. Let f be a meromorphic function on \mathbb{H}_{c} satisfying the following conditions.
(1) There exists an $M>0$ and a $c^{\prime}>c$ such that for any $t \in \mathbb{R}$, we have

$$
\left|f\left(\left\{\sigma+i t \mid \sigma>c^{\prime}\right\}\right)\right| \leq M .
$$

(2) There exists a non-increasing continuous function $\nu:(c, \infty) \rightarrow \mathbb{R}$ such that if σ is sufficiently near c then $\nu(\sigma) \leq 1+c-\sigma$, and that for any small $\epsilon>0, f(\sigma+i t)<_{f, \epsilon}|t|^{\nu(\sigma)+\epsilon}$ as $|t| \rightarrow \infty$.
(3) f has at most one pole of order m in \mathbb{H}_{c} at $s=s_{0}=\sigma_{0}+i t_{0}$, that is, we can write its Laurent expansion near $s=s_{0}$ as

$$
\begin{equation*}
\frac{a_{-m}}{\left(s-s_{0}\right)^{m}}+\frac{a_{-(m-1)}}{\left(s-s_{0}\right)^{m-1}}+\cdots+\frac{a_{-1}}{s-s_{0}}+a_{0}+\sum_{n=1}^{\infty} a_{n}\left(s-s_{0}\right)^{n} \tag{1.2}
\end{equation*}
$$

for $m \geq 0$, where we set $m=0$ if f has no pole in \mathbb{H}_{c}.
Then for any $s \in \mathbb{H}_{c} \backslash \mathbb{L}_{\sigma_{0}}$, we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(s+i T_{\alpha, \beta}^{n} x\right)=\frac{\alpha}{\pi} \int_{\mathbb{R}} \frac{f(s+i \tau)}{\alpha^{2}+(\tau-\beta)^{2}} d \tau \tag{1.3}
\end{equation*}
$$

for almost all $x \in \mathbb{R}$.
We denote the right-hand side of the above formula by $l_{\alpha, \beta}(s)$. If f has no pole in \mathbb{H}_{c},

$$
\begin{equation*}
l_{\alpha, \beta}(s)=f(s+\alpha+i \beta) \tag{1.4}
\end{equation*}
$$

for all $s \in \mathbb{H}_{c}$. If f has a pole at $s=s_{0}=\sigma_{0}+i t_{0}$,

$$
l_{\alpha, \beta}(s)= \begin{cases}f(s+\alpha+i \beta)+B_{m}\left(s_{0}\right), & c<\operatorname{Re}(s)<\sigma_{0}, s \neq s_{0}-\alpha-i \beta \tag{1.5}\\ \sum_{n=0}^{m} \frac{a_{-n}}{(-2 \alpha)^{n}}, & c<\operatorname{Re}(s)<\sigma_{0}, s=s_{0}-\alpha-i \beta \\ f(s+\alpha+i \beta), & \operatorname{Re}(s)>\sigma_{0}\end{cases}
$$

https://daneshyari.com/en/article/4614046

Download Persian Version:
https://daneshyari.com/article/4614046

Daneshyari.com

[^0]: th The first named author is supported by JSPS KAKENHI Grant Number 16J01139. The second named author is supported by JSPS KAKENHI Grant Number 15J02325.

 * Corresponding author.

 E-mail addresses: m12003v@math.nagoya-u.ac.jp (J. Lee), m12026a@math.nagoya-u.ac.jp (A.I. Suriajaya).

