Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On the structure of C_0 -semigroups of holomorphic Carathéodory isometries in Hilbert space

L.L. Stachó

University of Szeged, Bolyai Institute, Aradi vértanúk tere 1, 6720 Szeged, Hungary

ARTICLE INFO

Article history: Received 17 December 2015 Available online 26 July 2016 Submitted by R. Timoney

Keywords: Strongly continuous one-parameter group Holomorphic Carathéodory isometry Hilbert space Dilation

1. Introduction

Throughout this work **H** denotes a fixed complex Hilbert space with scalar product $\langle x | y \rangle$ which is linear (i.e. \mathbb{C} -linear) in x and antilinear in y and we shall write $||x|| := \langle x | x \rangle^{1/2}$ for the canonical norm. We use the notations $\mathbf{B} := \{x \in \mathbf{H} : ||x|| < 1\}$, $a^* := [x \mapsto \langle x | a \rangle]$ for the open unit ball, and the adjoint representation of bounded linear functionals, respectively. We regard the elements h, h^* ($h \in \mathbf{H}$) as column resp. row matrices and, given a linear map $A : \mathbf{S} \to \mathbf{H}$ on some linear submanifold of \mathbf{H} , we apply the canonical $\mathbf{H} \oplus \mathbb{C}$ -split matrix identifications $x \oplus \xi \equiv \begin{bmatrix} x \\ \xi \end{bmatrix}$ resp. $\begin{bmatrix} A & b \\ c^* & d \end{bmatrix} \equiv \begin{bmatrix} x \oplus \xi \mapsto (Ax + b) \oplus (c^*x + d) \end{bmatrix}$ with $x \in \mathbf{S}$, $b, c \in \mathbf{H}$ and $\xi, d \in \mathbb{C}$. This gives rise to the familiar linear representation of fractional linear maps on \mathbf{H} :

$$\mathfrak{F}\Bigl(\begin{bmatrix} A & b \\ c^* & d \end{bmatrix} \Bigr) := \bigl[x \mapsto (c^*x + d)^{-1} (Ax + b) \bigr].$$

Our object of chief interest will be the semigroup $\text{Iso}(d_{\mathbf{B}})$ of all holomorphic isometries of \mathbf{B} with respect to the Carathéodory metric $d_{\mathbf{B}}$. Recall [3,4] that all its elements are fractional linear maps, namely they are compositions of *Möbius transformations*¹ with linear isometries of \mathbf{H} (restricted to \mathbf{B}). In 1987, in his pioneering work [12], Vesentini established that the correspondence

E-mail address: stacho@math.u-szeged.hu.

ABSTRACT

We establish closed formulas for all strongly continuous one-parameter semigroups of holomorphic Carathéodory isometries of the unit ball of a Hilbert space in terms of spectral resolutions of skew self-adjoint dilations related to the Reich–Shoikhet nonlinear infinitesimal generator.

@ 2016 Elsevier Inc. All rights reserved.

 $^{^1\,}$ Fractional linear transformations mapping ${\bf B}$ injectively onto itself.

$$\mathfrak{F}^{\#}: [\mathcal{U}^t: t \in \mathbb{R}_+] \mapsto [\mathfrak{F}(\mathcal{U}^t) | \mathbf{B}: t \in \mathbb{R}_+]$$

maps the family $C_0 \mathcal{S}(\operatorname{Iso}(\mathbf{H}))$ of all strongly continuous one-parameter semigroups of linear isometries of the indefinite norm $||x||^2 - |\xi|^2$ on $\mathbf{H} \oplus \mathbb{C}$ into the family $C_0 \mathcal{S}(\operatorname{Iso}(d_{\mathbf{B}}))$ of all strongly continuous one-parameter semigroups $[\Psi^t : t \in \mathbb{R}_+] \subset \operatorname{Iso}(d_{\mathbf{B}})$.² According to [12, Th.VII], given $[\mathcal{U}^t : t \in \mathbb{R}_+] \in \mathfrak{S}$ with the infinitesimal generator $\mathcal{A} = \frac{d}{dt}|_{t=0+}\mathcal{U}^t$, for the corresponding non-linear objects $\Psi^t := \mathfrak{F}(\mathcal{U}^t)|\mathbf{B}$ we have $\{p \in \mathbf{B} : t \mapsto \Psi^t(p) \text{ is differentiable}\} = \{x \in \mathbf{B} : x \oplus 1 \in \operatorname{dom}(\mathcal{A})\}$, and the latter set is dense in the ball \mathbf{B} . It is well known [12,5] that here we can identify the linear operator \mathcal{A} (which is densely defined in $\mathbf{H} \oplus \mathbb{C}$) with an $\mathbf{H} \oplus \mathbb{C}$ -split matrix if and only if the orbit $t \mapsto \Psi^t(0)$ is differentiable. This happens if and only if the generator \mathcal{A} has the form

$$\mathcal{A} = \begin{bmatrix} iA + \nu & b \\ b^* & \nu \end{bmatrix}, \qquad \nu \in \mathbb{C}, \ b \in \mathbf{H}, \ A \in \operatorname{Her}_{s}(\mathbf{H})$$
(1.1)

with dom(\mathcal{A}) = dom(\mathcal{A}) $\oplus \mathbb{C}$ where Her_s(**H**) stands for the family of all unbounded **H**-hermitian operators (maximal symmetric closed linear operators with dense domain in **H**). Even the cases with non-differentiable 0-orbit can be treated by passing to a semigroup [$\Phi^t : t \in \mathbb{R}_+$] of the form $\Theta^{-1} \circ \Psi^t \circ \Theta$ with any Möbius transformation Θ such that $\Theta(0) \in \text{dom}(\frac{d}{dt}|_{t=0}\Psi^t(0))$. Since the Möbius group is transitive on **B**, hence any strongly continuous one-parameter semigroup [$\Psi^t : t \in \mathbb{R}_+$] $\in \mathcal{C}_0(\text{Iso}(d_{\mathbf{B}}))$ is equivalent up to a Möbius transformation (*Möbius equivalent* for short in the sequel) to a semigroup [$\Phi^t : t \in \mathbb{R}_+$] $\in \mathcal{C}_0(\text{Iso}(d_{\mathbf{B}}))$ whose infinitesimal generator [8,9] has the form

$$\Gamma(x) = \frac{d}{dt} \Big|_{t=0+} \Phi^t = b - \langle x \big| b \rangle x + iAx, \quad x \in \operatorname{dom}(R) \cap \mathbf{B}$$
(1.2)

with some maximal symmetric operator A defined densely on \mathbf{H} and some vector $b \in \mathbf{H}$. Also conversely, if iA is the infinitesimal generator for some strongly continuous one-parameter subsemigroup of $\mathcal{L}(\mathbf{H})$ then, for any $b \in \mathbf{H}$, the vector field (1.2) is the infinitesimal generator of a strongly continuous one-parameter subsemigroup of $\mathrm{Iso}(d_{\mathbf{B}})$. It is worth noticing that Kaup [6,7] achieved a far-reaching Jordan-theoretical analog of (1.2) describing the complete holomorphic vector fields of the unit ball of JB*-triple and integrated them for the case A = 0 resulting in a fractional linear type formula for generalized Möbius transformations. However, strong continuity destroys such an elegant setting. In [13,5] these considerations were extended to semigroups of fractional linear transformations arising from a strongly continuous one-parameter semigroup applied to the solutions of Ricatti type equations $\dot{x} = \Gamma(x)$ with vector fields analogous to (1.2) in reflexive Hilbert C^* -modules, but without providing explicit algebraic formulas.

2. Results

Henceforth, for short, C_0 -semigroup [resp. C_0 -group] will mean strongly continuous one-parameter semigroup [-group]. We shall write gen $[U^t : t \in \mathbb{R}_+]$ or gen $[\tilde{U}^t : t \in \mathbb{R}]$ for the infinitesimal generator of the C_0 -semigroup $[U^t : t \in \mathbb{R}_+]$ or C_0 -group $[\tilde{U}^t : t \in \mathbb{R}]$, respectively. Given a closed subspace **K** in the Hilbert spaces **H** or $\mathbf{H} \oplus \mathbb{C}$, let $P_{\mathbf{K}}$ be the orthogonal projection onto **K** (without danger of confusion).

In this paper we develop a triangularization method leading to explicit algebraic formulas for a C_0 -semigroup generated by a vector field (1.2). This will be done in terms of fixed points of Γ and quadratures of a C_0 -semigroup formed by complex linear isometries of a suitable 1-codimensional subspace of **H**.

² It seems that so far no argument appeared in the literature concerning the plausible surjectivity of the map $\mathfrak{F}^{\#}$. The question is rather harmless in our setting: in the case of the unit ball of a Hilbert space an argument with joint fixed points (Lemma 3.1) furnishes a positive answer. However, e.g. in the case of the unit ball of $\mathcal{L}(\mathbf{H})$, the surjectivity of the respective $\mathfrak{F}^{\#}$ seems to be open and highly non-trivial.

Download English Version:

https://daneshyari.com/en/article/4614047

Download Persian Version:

https://daneshyari.com/article/4614047

Daneshyari.com