Contents lists available at ScienceDirect

ELSEVIER

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Reducing subspaces for a class of non-analytic Toeplitz operators on the bidisk $\stackrel{\bigstar}{\approx}$

霐

Jia Deng^a, Yufeng Lu^a, Yanyue Shi^{b,*}

^a School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China
^b School of Mathematical Sciences, Ocean University of China, Qingdao 266100, PR China

ARTICLE INFO

Article history: Received 9 May 2016 Available online 18 August 2016 Submitted by J.A. Ball

Keywords: Reducing subspace Toeplitz operator Bergman space Polydisk

ABSTRACT

In this paper, we completely characterize all the reducing subspaces for a class of non-analytic Toeplitz operators with symbol $\varphi(z, w) = \alpha z^k + \beta \overline{w}^l$, where $\alpha, \beta \in \mathbb{C}$ and $\alpha \beta \neq 0$. We also prove that the von Neumann algebra $\mathcal{V}^*(\varphi) = \{T_{\varphi}, T_{\varphi}^*\}'$ is abelian.

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{D} denote the unit disk in the complex plane \mathbb{C} and dA(z) denote the normalized area measure over \mathbb{D} . Let $A^2(\mathbb{D}^2)$ denote the Bergman space consisting of all holomorphic functions over \mathbb{D}^2 , which are square integrable with respect to the normalized volume measure dA(z)dA(w). Then $A^2(\mathbb{D}^2)$ is a Hilbert space with inner product $\langle f,g \rangle = \int_{\mathbb{D}^2} f \overline{g} dA(z) dA(w)$. Given an essentially bounded function ϕ , the Toeplitz operator T_{ϕ} is defined by $T_{\phi}f = P(\phi f)$ for $f \in A^2(\mathbb{D}^2)$. Put $\mathcal{V}^*(\phi) = \{T_{\phi}, T_{\phi}^*\}'$, the commutant algebra of the C^* -algebra generated by T_{ϕ} in $B(A^2(\mathbb{D}^2))$. As is given in [2], $\mathcal{V}^*(\phi)$ is a von Neumann algebra and is the norm closed linear span of its projections.

For a bounded linear operator S on a Hilbert space \mathcal{H} , a closed subspace \mathcal{M} is called a reducing subspace for S if $S\mathcal{M} \subseteq \mathcal{M}$ and $S\mathcal{M}^{\perp} \subseteq \mathcal{M}^{\perp}$. In addition, \mathcal{M} is called minimal if there is no nonzero reducing subspace \mathcal{N} satisfying $\mathcal{N} \subsetneq \mathcal{M}$. It is well known that \mathcal{M} is a reducing subspace for S if and only if $SP_{\mathcal{M}} = P_{\mathcal{M}}S$, where $P_{\mathcal{M}}$ is the orthogonal projection from \mathcal{H} onto \mathcal{M} . In this way, the range of projections in $\mathcal{V}^*(\phi)$ and the reducing subspaces for T_{ϕ} are in one-to-one correspondence. Therefore, in some sense,

* Corresponding author.

 $^{^{\,\}pm}\,$ This research is supported by NSFC (No. 11271059, 11201438).

E-mail addresses: dj19891208@mail.dlut.edu.cn (J. Deng), lyfdlut@dlut.edu.cn (Y. Lu), shiyanyue@163.com (Y. Shi).

studying the structure of von Neumann algebra $\mathcal{V}^*(\phi)$ is equivalent to investigating the structure of the reducing subspaces for T_{ϕ} .

Let B_N denote a Blaschke product of finite order N on D. In 2009, Zhu [20] proved that a multiplication operator M_{B_2} on $L^2_a(\mathbb{D})$ has two distinct nontrivial minimal reducing subspaces, and conjectured M_{B_N} has exactly N distinct nontrivial minimal reducing subspaces. In particular, if $B_N(z) = z^N$, M_{z^N} is a weighted unilateral shift operator of finite multiplicity on a weighted sequence space. Stessin and Zhu [16] showed that every reducing subspace for M_{z^N} contains a minimal reducing subspace as $X_n = \overline{\operatorname{span}\{z^{n+kN}: k=0,1,2,\cdots\}}$ with $0 \leq n \leq N-1$. What is worth mentioning, Hardy spaces, Bergman spaces and Dirichlet Spaces are three particular cases of the weighted sequence spaces. Further, Douglas and Kim [4], Li, Lan and Liu [13] generalized the results to some weighted unilateral shift operators on $L^2_a(A_r)$ and $F^2_\alpha(\alpha > 0)$ (the square integrable analytic functions on the annulus A_r with respect to the normalized measure dA(z), and the square integrable entire functions on the whole complex plane \mathbb{C} with respect to the Gaussian measure, respectively). In 2004, Hu, Sun, Xu and Yu [12] proved that there is always a nontrivial reducing subspace for M_{B_N} . In 2009, Guo, Sun, Zheng and Zhong [10] disproved Zhu's conjecture and proposed the modified conjecture that M_{B_N} has at most N distinct nontrivial minimal reducing subspaces. On the basis of the hard work (see [6,7,10,17,18], etc.) by Guo, Huang, Sun, Zheng and Zhong, et al., Douglas, Putinar and Wang [5] obtained that the number of nontrivial minimal reducing subspaces for M_{B_N} equals the number of connected components of the Riemann surface $B_N^{-1} \circ B_N$ on the unit disk. As verified in [6,7], this result is equivalent to the assertion that $\mathcal{V}^*(B_N)$ is abelian. For infinite Blaschke products, Guo and Huang [8] proved that for "most" thin Blaschke products B, M_B has no nontrivial reducing subspace.

For high-dimensional domains, research on reducing-subspace problems began with some special monomial symbols. Lu and Zhou [14] completely characterized the structure of the reducing subspaces for $M_{z^kw^k}$ on the weighted Bergman spaces over \mathbb{D}^2 . Shi and Lu [15] found all the minimal reducing subspaces for $M_{z^kw^l}(k \neq l)$ on $A^2_{\alpha}(\mathbb{D}^n)(\alpha > -1)$ and showed that the unweighted case has more minimal reducing subspaces than the weighted case. Guo and Huang [9] gave the direct decompose of the reducing subspaces for M_{z^a} with $a \in \mathbb{Z}^d_+$ on a multi-dimensional separable Hilbert space by a different approach. For the case that p is a polynomial, the reducing subspaces for $T_{\alpha z^k + \beta w^l}(\alpha, \beta \in \mathbb{C})$ and the structure of $\mathcal{V}^*(\alpha z^k + \beta w^l)$ are investigated in [3,19]. More generally, Guo and Wang [11] studied the reducing subspaces for $A^k \otimes I + I \otimes B^l$ where $A \in B(H), B \in B(K)$ are two simple unilateral weighted shifts.

Motivated by the research of multiplication operators, we wonder what the results about the Toeplitz operator with non-analytic symbols look like. Compared with the analytic conditions, the tools for the Toeplitz operators with general non-analytic symbols seem far fewer at present. Albaseer, Shi and Lu [1] characterized the reducing subspaces for $T_{z^k\overline{w}^l}$ on $A^2(\mathbb{D}^2)$. Let $\varphi(z,w) = \alpha z^k + \beta \overline{w}^l$ where α and β are nonzero complex numbers. In this paper, we find all the minimal reducing subspaces for the Toeplitz operator T_{φ} on $A^2(\mathbb{D}^2)$, and consider the algebraic structure of $\mathcal{V}^*(\varphi)$. Unlike the analytic condition, we obtain that $\mathcal{V}^*(\varphi)$ is always abelian for every $\alpha\beta \neq 0$. The following theorem is our main result.

Theorem 1.1. Let $\varphi(z, w) = \alpha z^k + \beta \overline{w}^l$, where α, β are nonzero complex numbers and k, l are positive integers. Then

$$L_{a,b} = \overline{\text{span}\{z^{a+nk}w^{b+ml} \mid n, m \in \mathbb{Z}_+\}} (0 \le a \le k-1, 0 \le b \le l-1)$$

are exactly all the minimal reducing subspaces for T_{φ} . Furthermore, $\mathcal{V}^*(\varphi)$ is *-isomorphic to

 $\bigoplus_{i=1}^{\kappa l} \mathbb{C},$

and then $\mathcal{V}^*(\varphi)$ is abelian.

Download English Version:

https://daneshyari.com/en/article/4614079

Download Persian Version:

https://daneshyari.com/article/4614079

Daneshyari.com