Reducing subspaces for a class of non-analytic Toeplitz operators on the bidisk ${ }^{\text {N }}$

Jia Deng ${ }^{\text {a }}$, Yufeng Lu ${ }^{a}$, Yanyue Shi ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China
b School of Mathematical Sciences, Ocean University of China, Qingdao 266100, PR China

A R T I C L E I N F O

Article history:

Received 9 May 2016
Available online 18 August 2016
Submitted by J.A. Ball

Keywords:

Reducing subspace
Toeplitz operator
Bergman space
Polydisk

Abstract

In this paper, we completely characterize all the reducing subspaces for a class of non-analytic Toeplitz operators with symbol $\varphi(z, w)=\alpha z^{k}+\beta \bar{w}^{l}$, where $\alpha, \beta \in \mathbb{C}$ and $\alpha \beta \neq 0$. We also prove that the von Neumann algebra $\mathcal{V}^{*}(\varphi)=\left\{T_{\varphi}, T_{\varphi}^{*}\right\}^{\prime}$ is abelian.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{D} denote the unit disk in the complex plane \mathbb{C} and $d A(z)$ denote the normalized area measure over \mathbb{D}. Let $A^{2}\left(\mathbb{D}^{2}\right)$ denote the Bergman space consisting of all holomorphic functions over \mathbb{D}^{2}, which are square integrable with respect to the normalized volume measure $d A(z) d A(w)$. Then $A^{2}\left(\mathbb{D}^{2}\right)$ is a Hilbert space with inner product $\langle f, g\rangle=\int_{\mathbb{D}^{2}} f \bar{g} d A(z) d A(w)$. Given an essentially bounded function ϕ, the Toeplitz operator T_{ϕ} is defined by $T_{\phi} f=P(\phi f)$ for $f \in A^{2}\left(\mathbb{D}^{2}\right)$. Put $\mathcal{V}^{*}(\phi)=\left\{T_{\phi}, T_{\phi}^{*}\right\}^{\prime}$, the commutant algebra of the C^{*}-algebra generated by T_{ϕ} in $B\left(A^{2}\left(\mathbb{D}^{2}\right)\right)$. As is given in $[2], \mathcal{V}^{*}(\phi)$ is a von Neumann algebra and is the norm closed linear span of its projections.

For a bounded linear operator S on a Hilbert space \mathcal{H}, a closed subspace \mathcal{M} is called a reducing subspace for S if $S \mathcal{M} \subseteq \mathcal{M}$ and $S \mathcal{M}^{\perp} \subseteq \mathcal{M}^{\perp}$. In addition, \mathcal{M} is called minimal if there is no nonzero reducing subspace \mathcal{N} satisfying $\mathcal{N} \varsubsetneqq \mathcal{M}$. It is well known that \mathcal{M} is a reducing subspace for S if and only if $S P_{\mathcal{M}}=P_{\mathcal{M}} S$, where $P_{\mathcal{M}}$ is the orthogonal projection from \mathcal{H} onto \mathcal{M}. In this way, the range of projections in $\mathcal{V}^{*}(\phi)$ and the reducing subspaces for T_{ϕ} are in one-to-one correspondence. Therefore, in some sense,

[^0]studying the structure of von Neumann algebra $\mathcal{V}^{*}(\phi)$ is equivalent to investigating the structure of the reducing subspaces for T_{ϕ}.

Let B_{N} denote a Blaschke product of finite order N on \mathbb{D}. In 2009, Zhu [20] proved that a multiplication operator $M_{B_{2}}$ on $L_{a}^{2}(\mathbb{D})$ has two distinct nontrivial minimal reducing subspaces, and conjectured $M_{B_{N}}$ has exactly N distinct nontrivial minimal reducing subspaces. In particular, if $B_{N}(z)=z^{N}$, $M_{z^{N}}$ is a weighted unilateral shift operator of finite multiplicity on a weighted sequence space. Stessin and Zhu [16] showed that every reducing subspace for $M_{z^{N}}$ contains a minimal reducing subspace as $X_{n}=\overline{\operatorname{span}\left\{z^{n+k N}: k=0,1,2, \cdots\right\}}$ with $0 \leq n \leq N-1$. What is worth mentioning, Hardy spaces, Bergman spaces and Dirichlet Spaces are three particular cases of the weighted sequence spaces. Further, Douglas and Kim [4], Li, Lan and Liu [13] generalized the results to some weighted unilateral shift operators on $L_{a}^{2}\left(A_{r}\right)$ and $F_{\alpha}^{2}(\alpha>0)$ (the square integrable analytic functions on the annulus A_{r} with respect to the normalized measure $d A(z)$, and the square integrable entire functions on the whole complex plane \mathbb{C} with respect to the Gaussian measure, respectively). In 2004, $\mathrm{Hu}, \mathrm{Sun}, \mathrm{Xu}$ and Yu [12] proved that there is always a nontrivial reducing subspace for $M_{B_{N}}$. In 2009, Guo, Sun, Zheng and Zhong [10] disproved Zhu's conjecture and proposed the modified conjecture that $M_{B_{N}}$ has at most N distinct nontrivial minimal reducing subspaces. On the basis of the hard work (see [6,7,10,17,18], etc.) by Guo, Huang, Sun, Zheng and Zhong, et al., Douglas, Putinar and Wang [5] obtained that the number of nontrivial minimal reducing subspaces for $M_{B_{N}}$ equals the number of connected components of the Riemann surface $B_{N}^{-1} \circ B_{N}$ on the unit disk. As verified in $[6,7]$, this result is equivalent to the assertion that $\mathcal{V}^{*}\left(B_{N}\right)$ is abelian. For infinite Blaschke products, Guo and Huang [8] proved that for "most" thin Blaschke products B, M_{B} has no nontrivial reducing subspace.

For high-dimensional domains, research on reducing-subspace problems began with some special monomial symbols. Lu and Zhou [14] completely characterized the structure of the reducing subspaces for $M_{z^{k}} w^{k}$ on the weighted Bergman spaces over \mathbb{D}^{2}. Shi and $\mathrm{Lu}[15]$ found all the minimal reducing subspaces for $M_{z^{k} w^{l}}(k \neq l)$ on $A_{\alpha}^{2}\left(\mathbb{D}^{n}\right)(\alpha>-1)$ and showed that the unweighted case has more minimal reducing subspaces than the weighted case. Guo and Huang [9] gave the direct decompose of the reducing subspaces for $M_{z^{a}}$ with $a \in \mathbb{Z}_{+}^{d}$ on a multi-dimensional separable Hilbert space by a different approach. For the case that p is a polynomial, the reducing subspaces for $T_{\alpha z^{k}+\beta w^{l}}(\alpha, \beta \in \mathbb{C})$ and the structure of $\mathcal{V}^{*}\left(\alpha z^{k}+\beta w^{l}\right)$ are investigated in [3,19]. More generally, Guo and Wang [11] studied the reducing subspaces for $A^{k} \otimes I+I \otimes B^{l}$ where $A \in B(H), B \in B(K)$ are two simple unilateral weighted shifts.

Motivated by the research of multiplication operators, we wonder what the results about the Toeplitz operator with non-analytic symbols look like. Compared with the analytic conditions, the tools for the Toeplitz operators with general non-analytic symbols seem far fewer at present. Albaseer, Shi and Lu [1] characterized the reducing subspaces for $T_{z^{k} \bar{w}^{l}}$ on $A^{2}\left(\mathbb{D}^{2}\right)$. Let $\varphi(z, w)=\alpha z^{k}+\beta \bar{w}^{l}$ where α and β are nonzero complex numbers. In this paper, we find all the minimal reducing subspaces for the Toeplitz operator T_{φ} on $A^{2}\left(\mathbb{D}^{2}\right)$, and consider the algebraic structure of $\mathcal{V}^{*}(\varphi)$. Unlike the analytic condition, we obtain that $\mathcal{V}^{*}(\varphi)$ is always abelian for every $\alpha \beta \neq 0$. The following theorem is our main result.

Theorem 1.1. Let $\varphi(z, w)=\alpha z^{k}+\beta \bar{w}^{l}$, where α, β are nonzero complex numbers and k, l are positive integers. Then

$$
L_{a, b}=\overline{\operatorname{span}\left\{z^{a+n k} w^{b+m l} \mid n, m \in \mathbb{Z}_{+}\right\}}(0 \leq a \leq k-1,0 \leq b \leq l-1)
$$

are exactly all the minimal reducing subspaces for T_{φ}. Furthermore, $\mathcal{V}^{*}(\varphi)$ is $*$-isomorphic to

$$
\bigoplus_{i=1}^{k l} \mathbb{C}
$$

and then $\mathcal{V}^{*}(\varphi)$ is abelian.

https://daneshyari.com/en/article/4614079

Download Persian Version:
https://daneshyari.com/article/4614079

Daneshyari.com

[^0]: मे This research is supported by NSFC (No. 11271059, 11201438).

 * Corresponding author.

 E-mail addresses: dj19891208@mail.dlut.edu.cn (J. Deng), lyfdlut@dlut.edu.cn (Y. Lu), shiyanyue@163.com (Y. Shi).

