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In this paper the global dynamics of a cubic Liénard system with a cusp is studied 
to follow Wang and Kooij (1992) [13], who proved that the maximum number of 
limit cycles is 2 and stated two conjectures about the curves of the cuspidal loop 
bifurcation and the double limit cycle bifurcation. We give positive answers to 
those two conjectures and further properties of those bifurcation curves such as 
monotonicity and smoothness. Finally, associated with previous results we obtain 
the complete bifurcation diagram and all phase portraits, and demonstrate some 
numerical examples.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The planar Liénard system, a representation in the two-dimensional form of the Liénard equation ẍ +
f(x)ẋ + g(x) = 0, is one of the classical mechanical systems. The research of its dynamical behaviors can 
be found in many monographs (see, e.g., [4,8,14]) and many interesting results are given in journal papers 
(see, e.g., [5,7,10,12,13]). A cubic Liénard system

{
ẋ = y + μ1x

2 + x3,

ẏ = μ2x
2 − x3 (1.1)

has been introduced in [1,11,13] to study the viscous flow structures of a three-dimensional system near 
a planar wall. The origin O is the unique equilibrium when μ2 = 0. Besides O, system (1.1) has another 
equilibrium E : (μ2, −μ1μ

2
2 − μ3

2) and O is a cusp when μ2 �= 0. Since the form of (1.1) is invariant under 
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the change (x, y, μ1, μ2) → (−x, −y, −μ1, −μ2), we only need to consider (μ1, μ2) in G := {(μ1, μ2) ∈ R
2 :

μ1 ≥ 0}.
In [13] the global dynamical analysis of system (1.1) is done for (μ1, μ2) ∈ G. It is proved that the 

maximum number of limit cycles is 2. The existence of the cuspidal loop bifurcation curves is given as 
well as the existence of the double limit cycle bifurcation curves. Moreover, the uniqueness of the cuspidal 
loop bifurcation curves is also proved and the unique one is denoted by μ1 = ϕ(μ2). However, there is no 
answer to the uniqueness of the double limit cycle bifurcation curves. On the other hand, as stated in [13, 
Theorem 5] ϕ(μ2) ≥ ψ1(μ2) := max{μ1 : (μ1, μ2) lies on the double limit cycle bifurcation curves} for any 
fixed μ2. But we do not know if there exists a point (μ1, μ2) lying on both the cuspidal loop bifurcation 
curve and one of the double limit cycle bifurcation curves, i.e., the location relation of the cuspidal loop 
bifurcation curve and the double limit cycle bifurcation curves is another unsolved question. Hence, in [13]
there are two conjectures:

Conjecture (a) ϕ(μ2) > ψ1(μ2).
Conjecture (b) The double limit cycle bifurcation curve is unique.

Note that the bifurcation diagram, shown in [13, Figure 5], is given based on that both these conjectures
have positive answers. As indicated in the proof of [13, Theorem 5], the stability of the cuspidal loop if it 
exists is equivalent to ϕ(μ2) > ψ1(μ2) because the semistability of the cuspidal loop means ϕ(μ2) = ψ1(μ2). 
Thus, Conjecture (a) is actually equivalent to conjecture that the cuspidal loop is stable.

Following the work of [13], we continue to study the global dynamical behaviors of system (1.1). Our 
main purpose is to answer Conjectures (a) and (b) so that the bifurcation diagram can be given strictly and 
to investigate the monotonicity of those bifurcation curves as well as their smoothness. To help the readers 
and keep the completeness of results, associated with some results of [13, Theorem 5] we give our main 
result in the following theorem, where large (resp. small) limit cycles mean periodic orbits surrounding two 
equilibria (resp. a single equilibrium).

Theorem 1.1. As shown in Fig. 1, the global bifurcation diagram of (1.1) consists of the following bifurcation 
curves:

(1) generalized transcritical bifurcation curve GT = {(μ1, μ2) ∈ G : μ2 = 0};
(2) Hopf bifurcation curve H = {(μ1, μ2) ∈ G : μ1 = −3μ2/2 > 0} for E;
(3) cuspidal loop bifurcation curve CL = {(μ1, μ2) ∈ G : μ1 = ϕ(μ2) > 0};
(4) double limit cycle bifurcation curve DL = {(μ1, μ2) ∈ G : μ2 = ψ(μ1) < 0};

where ϕ ∈ C∞(R−, R+) is decreasing, ψ ∈ C0(R+, R−) and

−μ2 < min{μ1 : μ2 = ψ(μ1)} ≤ max{μ1 : μ2 = ψ(μ1)} < ϕ(μ2) < −3μ2/2. (1.2)

The complete classification of phase portraits is also given in Fig. 1, where

I := {(μ1, μ2) ∈ G : μ2 > 0} ;

II :=
{

(μ1, μ2) ∈ G : 0 <
−3μ2

2 < μ1

}
;

III :=
{

(μ1, μ2) ∈ G : ϕ(μ2) < μ1 <
−3μ2

2

}
;

IV :=
{
(μ1, μ2) ∈ G : ψ(μ1) < μ2 < ϕ−1(μ1)

}
;
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