

Entropy numbers of functions on $[-1,1]$ with Jacobi weights ${ }^{\text {s }}$

Kai Wang *, Yali Wang
School of Mathematics and Information Sciences, Langfang Teachers University, Langfang 065000, China

A R T I C L E IN F O

Article history:

Received 6 May 2016
Available online 23 August 2016
Submitted by S. Tikhonov

Keywords:

Entropy numbers
Weighted Sobolev space
Gaussian quadrature formulae

Abstract

We study the entropy numbers of weighted Sobolev classes $B W_{p, \alpha, \beta}^{r}$ in $L_{q, \alpha, \beta}$, where $L_{q, \alpha, \beta}, 1 \leq q \leq \infty$ denotes the weighted L_{q} space on $[-1,1]$ with respect to weight $w_{\alpha, \beta}(x):=(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta>-1 / 2$. Exact orders of the entropy numbers are obtained for all $1 \leq p, q \leq \infty$ and $\alpha, \beta>-1 / 2$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main result

Denote by $L_{p, \alpha, \beta} \equiv L_{p}\left([-1,1], w_{\alpha, \beta}\right), 1 \leq p<\infty$, the space of measurable functions defined on $[-1,1]$ with the finite norm

$$
\|f\|_{p, \alpha, \beta}:=\left(\int_{-1}^{1}|f(x)|^{p} w_{\alpha, \beta}(x) d x\right)^{1 / p}
$$

where $w_{\alpha, \beta}(x):=(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta>-1 / 2$ is the Jacobi weight. For $p=\infty$ we assume that $L_{\infty, \alpha, \beta}$ is replaced by the space $C[-1,1]$ of continuous functions on $[-1,1]$ with the uniform norm.

It is well known that the classical Jacobi polynomials $\left\{P_{n}^{(\alpha, \beta)}\right\}_{n=0}^{\infty}$ normalized by $P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n}$ form an orthogonal basis for $L_{2, \alpha, \beta}$ (see [25]). In particular,

$$
\int_{-1}^{1} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(\alpha, \beta)}(y) w_{\alpha, \beta}(x) d x=\delta_{n, m} h_{n}(\alpha, \beta)
$$

[^0]http://dx.doi.org/10.1016/j.jmaa.2016.08.024
0022-247X/© 2016 Elsevier Inc. All rights reserved.
where
$$
h_{n}(\alpha, \beta)=\frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} \frac{\Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{(2 n+\alpha+\beta+1) \Gamma(n+1) \Gamma(n+\alpha+\beta+1)} \sim n^{-1}
$$
with constants of equivalence depending only on α and β. Then the normalized Jacobi polynomials $P_{n}(x)$ defined by
$$
P_{n}(x)=\left(h_{n}^{(\alpha, \beta)}\right)^{-1 / 2} P_{n}^{(\alpha, \beta)}(x), \quad n=0,1, \ldots,
$$
form an orthonormal basis for $L_{2, \alpha, \beta}$ where the inner product is defined by
$$
\langle f, g\rangle:=\int_{-1}^{1} f(x) \overline{g(x)} w_{\alpha, \beta}(x) d x
$$

Consequently, for every $f \in L_{2, \alpha, \beta}, f=\sum_{l=0}^{\infty}\left\langle f, P_{l}\right\rangle P_{l}$.
We know that $P_{n}^{(\alpha, \beta)}$ is just the eigenfunction corresponding to the eigenvalues $-n(n+\alpha+\beta+1)$ of the second-order differential operator

$$
D_{\alpha, \beta}:=\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-(\alpha-\beta+(\alpha+\beta+2) x) \frac{d}{d x},
$$

which means that

$$
D_{\alpha, \beta} P_{n}^{(\alpha, \beta)}(x)=-n(n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}(x) .
$$

Given $r>0$, we define the fractional power $\left(-D_{\alpha, \beta}\right)^{r / 2}$ of the operator $-D_{\alpha, \beta}$ on f by

$$
\left(-D_{\alpha, \beta}\right)^{r / 2}(f)=\sum_{k=0}^{\infty}(k(k+\alpha+\beta+1))^{r / 2}\left\langle f, P_{k}\right\rangle P_{k},
$$

in the sense of distribution.
The weighted Sobolev space is defined as follows: for $r>0$ and $1 \leq p \leq \infty$,

$$
\begin{gathered}
W_{p}^{r}\left([-1,1], \omega_{\alpha, \beta}\right) \equiv W_{p, \alpha, \beta}^{r}:=\left\{f \in L_{p, \alpha, \beta}: \exists g \in L_{p, \alpha, \beta}\right. \text { such that } \\
\left.g=\left(-D_{\alpha, \beta}\right)^{\frac{r}{2}}(f)\right\},
\end{gathered}
$$

where $\|f\|_{W_{p, \alpha, \beta}^{r}}:=\|f\|_{p, \alpha, \beta}+\left\|\left(-D_{\alpha, \beta}\right)^{\frac{r}{2}}(f)\right\|_{p, \alpha, \beta}$. While we denote by $B W_{p, \alpha, \beta}^{r}$ the unit ball of $W_{p, \alpha, \beta}^{r}$.
Let A be a compact subset of a Banach space X. For $n \in \mathbb{N}$, the nth entropy number $e_{n}(A, X)$ is defined as the infimum of all positive ε such that there exist $x_{1}, \ldots, x_{2^{n}}$ in X satisfying $A \subset \bigcup_{k=1}^{2^{n}}\left(x_{k}+\varepsilon B_{X}\right)$, where B_{X} is the unit ball of X, that is,

$$
e_{n}(A, X)=\inf \left\{\varepsilon>0: A \subset \bigcup_{k=1}^{2^{n}}\left(x_{k}+\varepsilon B_{X}\right), x_{1}, \ldots, x_{2^{n}} \in X\right\}
$$

Let $T \in L(X, Y)$ be a bounded linear operator between the Banach spaces X and Y. The nth entropy number $e_{n}(T)$ is defined as

$$
e_{n}(T):=e_{n}(T: X \mapsto Y)=e_{n}\left(T\left(B_{X}\right), Y\right)
$$

https://daneshyari.com/en/article/4614091

Download Persian Version:

https://daneshyari.com/article/4614091

Daneshyari.com

[^0]: रो Supported by the National Natural Science Foundation of China (Project no. 11271263), the Beijing Natural Science Foundation (1132001), and the Foundation of Langfang Teachers University (LSLB201603).

 * Corresponding author.

 E-mail addresses: cnuwangk@163.com (K. Wang), 2284690983@qq.com (Y. Wang).

