Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Entropy numbers of functions on [-1, 1] with Jacobi weights $\stackrel{\star}{\approx}$

霐

Kai Wang*, Yali Wang

School of Mathematics and Information Sciences, Langfang Teachers University, Langfang 065000, China

ARTICLE INFO

Article history: Received 6 May 2016 Available online 23 August 2016 Submitted by S. Tikhonov

Keywords: Entropy numbers Weighted Sobolev space Gaussian quadrature formulae

ABSTRACT

We study the entropy numbers of weighted Sobolev classes $BW_{p,\alpha,\beta}^r$ in $L_{q,\alpha,\beta}$, where $L_{q,\alpha,\beta}, 1 \leq q \leq \infty$ denotes the weighted L_q space on [-1,1] with respect to weight $w_{\alpha,\beta}(x) := (1-x)^{\alpha}(1+x)^{\beta}, \ \alpha,\beta > -1/2$. Exact orders of the entropy numbers are obtained for all $1 \leq p, q \leq \infty$ and $\alpha, \beta > -1/2$.

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction and main result

Denote by $L_{p,\alpha,\beta} \equiv L_p([-1,1], w_{\alpha,\beta}), 1 \le p < \infty$, the space of measurable functions defined on [-1,1] with the finite norm

$$||f||_{p,\alpha,\beta} := \left(\int_{-1}^{1} |f(x)|^p w_{\alpha,\beta}(x) dx\right)^{1/p},$$

where $w_{\alpha,\beta}(x) := (1-x)^{\alpha}(1+x)^{\beta}$, $\alpha, \beta > -1/2$ is the Jacobi weight. For $p = \infty$ we assume that $L_{\infty,\alpha,\beta}$ is replaced by the space C[-1,1] of continuous functions on [-1,1] with the uniform norm.

It is well known that the classical Jacobi polynomials $\{P_n^{(\alpha,\beta)}\}_{n=0}^{\infty}$ normalized by $P_n^{(\alpha,\beta)}(1) = \binom{n+\alpha}{n}$ form an orthogonal basis for $L_{2,\alpha,\beta}$ (see [25]). In particular,

$$\int_{-1}^{1} P_n^{(\alpha,\beta)}(x) P_m^{(\alpha,\beta)}(y) w_{\alpha,\beta}(x) dx = \delta_{n,m} h_n(\alpha,\beta),$$

(1132001), and the Foundation of Langfang Teachers University (LSLB201603).

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2016.08.024 0022-247X/© 2016 Elsevier Inc. All rights reserved.

^{*} Supported by the National Natural Science Foundation of China (Project no. 11271263), the Beijing Natural Science Foundation

E-mail addresses: cnuwangk@163.com (K. Wang), 2284690983@qq.com (Y. Wang).

where

$$h_n(\alpha,\beta) = \frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1)\Gamma(\beta+1)} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{(2n+\alpha+\beta+1)\Gamma(n+1)\Gamma(n+\alpha+\beta+1)} \sim n^{-1}$$

with constants of equivalence depending only on α and β . Then the normalized Jacobi polynomials $P_n(x)$ defined by

$$P_n(x) = (h_n^{(\alpha,\beta)})^{-1/2} P_n^{(\alpha,\beta)}(x), \quad n = 0, 1, \dots$$

form an orthonormal basis for $L_{2,\alpha,\beta}$ where the inner product is defined by

$$\langle f,g \rangle := \int_{-1}^{1} f(x) \overline{g(x)} w_{\alpha,\beta}(x) \, dx$$

Consequently, for every $f \in L_{2,\alpha,\beta}$, $f = \sum_{l=0}^{\infty} \langle f, P_l \rangle P_l$. We know that $P_n^{(\alpha,\beta)}$ is just the eigenfunction corresponding to the eigenvalues $-n(n+\alpha+\beta+1)$ of the second-order differential operator

$$D_{\alpha,\beta} := (1-x^2)\frac{d^2}{dx^2} - (\alpha - \beta + (\alpha + \beta + 2)x)\frac{d}{dx}$$

which means that

$$D_{\alpha,\beta}P_n^{(\alpha,\beta)}(x) = -n(n+\alpha+\beta+1)P_n^{(\alpha,\beta)}(x).$$

Given r > 0, we define the fractional power $(-D_{\alpha,\beta})^{r/2}$ of the operator $-D_{\alpha,\beta}$ on f by

$$(-D_{\alpha,\beta})^{r/2}(f) = \sum_{k=0}^{\infty} (k(k+\alpha+\beta+1))^{r/2} \langle f, P_k \rangle P_k,$$

in the sense of distribution.

The weighted Sobolev space is defined as follows: for r > 0 and $1 \le p \le \infty$,

$$W_p^r([-1,1],\omega_{\alpha,\beta}) \equiv W_{p,\alpha,\beta}^r := \Big\{ f \in L_{p,\alpha,\beta} : \exists \ g \in L_{p,\alpha,\beta} \text{ such that} \\ g = (-D_{\alpha,\beta})^{\frac{r}{2}}(f) \Big\},$$

where $\|f\|_{W^r_{p,\alpha,\beta}} := \|f\|_{p,\alpha,\beta} + \|(-D_{\alpha,\beta})^{\frac{r}{2}}(f)\|_{p,\alpha,\beta}$. While we denote by $BW^r_{p,\alpha,\beta}$ the unit ball of $W^r_{p,\alpha,\beta}$.

Let A be a compact subset of a Banach space X. For $n \in \mathbb{N}$, the nth entropy number $e_n(A, X)$ is defined as the infimum of all positive ε such that there exist x_1, \ldots, x_{2^n} in X satisfying $A \subset \bigcup_{k=1}^{2^n} (x_k + \varepsilon B_X)$, where B_X is the unit ball of X, that is,

$$e_n(A,X) = \inf\{\varepsilon > 0 : A \subset \bigcup_{k=1}^{2^n} (x_k + \varepsilon B_X), \ x_1, \dots, x_{2^n} \in X\}.$$

Let $T \in L(X, Y)$ be a bounded linear operator between the Banach spaces X and Y. The nth entropy number $e_n(T)$ is defined as

$$e_n(T) := e_n(T : X \mapsto Y) = e_n(T(B_X), Y)$$

986

Download English Version:

https://daneshyari.com/en/article/4614091

Download Persian Version:

https://daneshyari.com/article/4614091

Daneshyari.com