
The Journal of Systems and Software 116 (2016) 95–100

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Shorter hash-based signatures

Geovandro C.C.F. Pereira

1 , ∗, Cassius Puodzius 1 , Paulo S.L.M. Barreto

1

Departamento de Engenharia de Computação e Sistemas Digitais (PCS), Escola Politécnica, Universidade de São Paulo. Av. Prof. Luciano Gualberto, trav. 3, 158

05508–900 São Paulo (SP), Brazil

a r t i c l e i n f o

Article history:

Received 2 October 2014

Revised 31 May 2015

Accepted 1 July 2015

Available online 10 July 2015

Keywords:

Embedded security

Hash-based signatures

Internet of things

a b s t r a c t

We describe an efficient hash-based signature scheme that yields shorter signatures than the state of the

art. Signing and verification are faster as well, and the overall scheme is suitable for constrained platforms

typical of the Internet of Things. We describe an efficient implementation of our improved scheme and show

memory, time, and energy consumption benchmarks over a real device, i.e. the ATmega128l 8-bit AVR micro-

controller embedded in MICAz , a typical sensor node used in wireless sensor networks.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Internet of Things (IoT) purports to connect a vast range of equip-

ments via the Internet, as long as the underlying processor is large

enough to support the TCP/IP protocol. This includes extremely con-

strained platforms, with as little as 64 KiB ROM and 4 KiB RAM as

certain SIM cards. While this is commonly enough for symmetric

primitives (hash functions, block and stream ciphers, and even richer

constructions like authenticated encryption with associated data), it

may push most asymmetric primitives beyond the available compu-

tational resources on such platforms. Yet, securing a typical Internet

of Things scenario requires, at the very least, a basic public-key in-

frastructure (PKI) able to support public-key encryption and digital

signatures, which are themselves based on asymmetric primitives.

While encryption can be attained with fairly modest resources by

adopting lattice-based schemes (Hoffstein et al., 1998) or code-based

schemes (Misoczki et al., 2013), offering even the most basic func-

tionality of digital signatures on the most stringent platforms is no

easy task. Obvious and more exotic candidates alike suffer from the

extreme lack of computational resources on some of those platforms,

which currently seem to be at, or already beyond, the bare minimum

needed to establish a full-fledged PKI. This lack of an efficient signa-

ture functionality constitutes a serious hindrance to the very concept

∗ Corresponding author. Tel.: +55 11 3091 9759.

E-mail addresses: geovandro@larc.usp.br (G.C.C.F. Pereira), cpuodzius@larc.usp.br

(C. Puodzius), pbarreto@larc.usp.br (P.S.L.M. Barreto).
1 The authors are supported by Intel Research grant “Energy-efficient Security for

SoC Devices – Asymmetric Cryptography for Embedded Systems” 2012. P. Barreto is

also supported by CNPq research productivity grant 306935/2012-0.

of the IoT, especially if resorting to more expensive processors or co-

processors is not an option.

Hash-based signatures, which originally appeared somewhat too

far-fetched for actual deployment, turned out to be a very promis-

ing tool for the aforementioned scenario. On the one hand, their

main drawback – which was a very long key generation time, have

been for the most part successfully addressed in recent research

works (Buchmann et al., 2007). On the other hand, practical consider-

ations like the actual signature size and consequent bandwidth occu-

pation, as well as leakage-resilience, have also been addressed, with

very promising results (Buchmann et al., 2011b; Eisenbarth et al.,

2013b; Hülsing, 2013; Rohde et al., 2008). Although they do consti-

tute true digital signatures in the sense of public-key cryptosystems,

such schemes are based on entirely symmetric primitives, which are

readily available on constrained platforms, are typically very efficient,

and appear to resist attacks mounted even with the help of quantum

computers, to the extent that hash-based signatures have been pro-

moted to the category of quantum-resistant, or post-quantum, cryp-

tosystems. Yet, given the extreme scarcity of resources one finds in

IoT processors, full establishment of a secure environment for real-

istic applications requires that all cryptographic features be made as

lightweight as possible, and hash-based signatures are no exception.

It therefore makes sense to look for the most efficient constructions

rather than sticking with proofs of concept.

Our contribution in this paper is an efficient hash-based signa-

ture scheme that not only yields shorter signatures than the previous

state of the art, but also enables faster signature generation and veri-

fication for the same security level and word size parameters. We also

provide a practical implementation for a very constrained microcon-

troller, the ATmega128l (@7.37MHz, 4KiB SRAM and 128KiB ROM),

and argue that the resulting scheme is very suitable for constrained

http://dx.doi.org/10.1016/j.jss.2015.07.007

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.07.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.07.007&domain=pdf
mailto:geovandro@larc.usp.br
mailto:cpuodzius@larc.usp.br
mailto:pbarreto@larc.usp.br
http://dx.doi.org/10.1016/j.jss.2015.07.007

96 G.C.C.F. Pereira et al. / The Journal of Systems and Software 116 (2016) 95–100

platforms typical of the IoT, as well as similar or related scenarios, like

wireless sensor networks and intelligent habitats and environments.

The remainder of this document is organized as follows. In

Section 2 we introduce the essential concepts behind digital signa-

tures in general, and hash-based signatures in particular. We de-

scribe our proposal in Section 3 , assess it and provide comparisons

in Section 4 , evaluate its security in Section 5 and describe our im-

plementation results and benchmarks in Section 6 . We conclude in

Section 7 .

2. Preliminaries

In this section we first recapitulate the Winternitz one-time sig-

natures which combined with the Merkle tree construction allows to

obtain a multi-time signature scheme. We also give a brief descrip-

tion of the Merkle signature scheme (MSS).

2.1. Winternitz one-time signatures

The Winternitz one-time signature (W-OTS) scheme views the

message representative to be signed as a sequence of L w -bit words

(or chunks), denoted by m = (m 0 , . . . , m L −1), where m i stands for an

integer value in the range 0 . . . 2 w − 1 . The signature component for

any particular such word m i will be an m i th iterated preimage of some

(public) L -word hash value univocally associated to the i th compo-

nent of the message representative.

Formally, let G : {0, 1} ∗ → {0, 1} 2 n be a collision-resistant hash

function and F : {0, 1} ∗ → {0, 1} n a one-way hash function. Also let

F k := F ◦ F ◦ · · · ◦ F be F iterated k times.

Message representative preparation:

Let data ∈ {0, 1} ∗ denote the original document to be signed.

First compute M = (m 0 , . . . , m � 1 −1) := G(data), where � 1 = � 2 n/w � .
Then, compute the checksum CS :=

∑ � 1 −1

i =0
(2 w − 1 − m i) which is

then split into w -bit words (m � 1
, . . . , m � 1 + � 2 −1) and appended to M ,

resulting the message representative m = M|| CS = (m 0 , . . . , m L −1).

The maximum checksum integer value is (2 w − 1)� 1 , which fits in

� 2 = � (lg((2 w − 1)� 1)/w � w -bit words, therefore the total number of

w -bit words is L = � 1 + � 2 .

The triple of algorithms that defines this scheme is:

• Gen : Choose L strings s i
$ ← { 0 , 1 } n uniformly at random, and com-

pute v i ← F 2
w −1 (s i), for i = 0 , . . . , L − 1 . The private key is the

sequence (s 0 , . . . , s L −1), and the public key is v = F (v 0 || · · · ||
v L −1) ∈ { 0 , 1 } n .

• Sig : To sign a message representative m = (m 0 , . . . , m L −1), com-

pute S i ← F 2
w −1 −m i (s i), and let the signature be the sequence of

resulting values S = (S 0 , . . . , S L −1) ∈ ({ 0 , 1 } n)L . Notice that S i is an

m i th iterated preimage of v i for all i = 0 , . . . , L − 1 .
• Ver : To verify the signature S = (S 0 , . . . , S L −1) of the message

representative m = (m 0 , . . . , m L −1), compute t i = F m i (S i) for i =

0 , . . . , L − 1 and check if v = F (t 0 || · · · || t L −1).

An obvious improvement to the scheme is to adopt a short secret

string s ∈ {0, 1} n as the private key, and then compute either s i ←

F (s || i) on demand to reducing memory usage, or else, given a longer

hash K : {0, 1} n → ({0, 1} n) L (say, a cryptographic sponge Bertoni et al.,

2007), set (s 0 , . . . , s L −1) ← K(s). The first approach is more adequate

for memory and speed limited devices since it can be built from a

block cipher-based hash function. Usually many embedded devices

provide fast SW and sometimes HW AES implementations, so it can

be reused for the hash construction. Given the 4KiB SRAM memory

and 7.37 MHz budget available in the ATmega128l microcontroller,

our implementation focus on the first approach .

2.2. Merkle signature scheme

The Merkle tree-based signature scheme of height h (defined as

the distance between the root and the leaves of the tree, so as to have

2 h leaves and 2 h +1 − 1 total nodes) and a hash function F extends a

one-time signature scheme to 2 h signable messages for each Merkle

public key.

The technique consists of generating 2 h one-time key pairs (s (j) ,

v (j)), 0 ≤ j < 2 h , for a given one-time signature scheme, and then com-

puting a tree of hash values q 1 , . . . , q 2 h +1 −1 so that q i = F (q 2 i || q 2 i +1)

for 1 ≤ i < 2 h , and q 2 h + j = F (v (j)) for 0 ≤ j < 2 h . The overall public

key for the scheme is Y = q 1 .

Given the one-time signature S (j) verifiable under the public key

v (j) , the Merkle technique assembles an authentication path consist-

ing of the tree nodes whose values are not directly computable from

v (j) alone, but are nevertheless needed to compute the values of the

parent nodes leading from v (j) to the root Y .

Thus, a Merkle signature is a triple �(j) = (S (j), v (j), Q

(j)) where

Q

(j) is the sequence of values (q
 j/ 2 u �⊕1 | u = 0 , . . . , h − 1) along

the authentication path. The Merkle signature length is z = | S (j)| +

| v (j)| + h | q i | .
Merkle’s construction allows the root value to be computed from

an as yet unused (and publicly unknown) v (j) , and then compared to

Y . This ensures that v (j) is itself authentic, whereby S (j) can be verified

as well.

The Merkle–Winternitz scheme, which combines Winternitz one-

time signatures with an overall Merkle tree scheme, yields one of

the most efficient hash-based signatures. For a Merkle–Winternitz

scheme, the signature size is z = | S (j)| + | v (j)| + h | q i | = Ln + n + hn =

n(L + 1 + h) bits.

3. Proposed scheme

Our scheme is related to that by Rohde et al. (2008) , which we

call here REDBP scheme for short. A small conceptual difference is

responsible for our reduced signature size and higher processing

speeds attainable. Furthermore, we still avail ourselves of the remarks

in Eisenbarth et al. (2013b) to reduce the number of leaf generation

to improve time performance.

Key generation requires heavy computational load, since all nodes

up to the root must be calculated. Furthermore, many nodes are

stored during this process for the setup of REDBP. Therefore, if key

generation and signature calculation do not have to take place in the

same device, a better memory usage can be achieved by storing some

fixed nodes in ROM instead of RAM. Due to this fact, it is more suitable

to perform key generation on standard PCs than on a microcontroller

and enhance the setup of the signing device.

Specifically, the REDBP scheme adopts a hash function G : {0,

1} ∗ → {0, 1} 2 n to create digests of the form M = (m 0 , . . . , m � 1 −1) =

G(data), m i ∈ { 0 , . . . , 2 w − 1 } and produces message representatives

of the form M|| CS = (m 0 , . . . , m L −1) as described in Section 2.1 , with

a straightforward Merkle tree construction on top of Winternitz sig-

natures. For security level roughly 2 n (whereby forging existentially

a signature takes about 2 n computational steps), that scheme sets

� 1 w = 2 n . Thus the G hash size is twice that of the F hash size. Since

each Winternitz signature has length | S (j)| = nL ≈ n� 1 (omitting the

checksum size � 2), as a result each Merkle–Winternitz signature has

length z = n(L + 1 + h) ≈ n(� 1 + 1 + h) = n(2 n/w + 1 + h).

Intuitively, this is necessary to prevent precomputed collision at-

tacks. Indeed, since only the message data is fed into the hash func-

tion G , an attacker could mount a Yuval-style attack (Yuval, 1979),

preparing beforehand two sets of semantically equivalent messages,

the first favorable to the signer and the second unfavorable, and look-

ing for a collision between a favorable message data and an unfavor-

able one data ′ , finally presenting data to the signer and data ′ to an

Download English Version:

https://daneshyari.com/en/article/461501

Download Persian Version:

https://daneshyari.com/article/461501

Daneshyari.com

https://daneshyari.com/en/article/461501
https://daneshyari.com/article/461501
https://daneshyari.com

