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For X a finite subset of the circle and for 0 < r ≤ 1 fixed, 
consider the function fr : X → X which maps each point to 
the clockwise furthest element of X within angular distance 
less than 2πr. We study the discrete dynamical system on X
generated by fr, and especially its expected behavior when X
is a large random set. We show that, as |X| → ∞, the expected 
fraction of periodic points of fr tends to 0 if r is irrational 
and to 1

q
if r = p

q
is rational with p and q coprime. These 

results are obtained via more refined statistics of fr which we 
compute explicitly in terms of (generalized) Catalan numbers. 
The motivation for studying fr comes from Vietoris–Rips 
complexes, a geometric construction used in computational 
topology. Our results determine how much one can expect to 
simplify the Vietoris–Rips complex of a random sample of the 
circle by removing dominated vertices.
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1. Introduction

Finite cyclic dynamical systems We are interested in a family of finite dynamical sys-
tems parametrized by a finite subset X ⊆ S1 of the circle and a real number 0 < r ≤ 1. 
Here S1 = R/Z is the circle of unit circumference equipped with the arc-length metric. 
For X ⊆ S1 finite and 0 < r ≤ 1, we define the map fr : X → X which sends each 
point x ∈ X to the furthest element of X within clockwise distance less than r from x
(equivalently, within angular distance less than 2πr from x). Iterating fr gives rise to a 
discrete time dynamical system on X, which we call a cyclic dynamical system. We can 
speak of periodic and non-periodic points of fr and the structure and size of the periodic 
orbits of fr (see Fig. 1(a,b)).

As the set X ⊆ S1 becomes more dense in S1, each cyclic dynamical system fr can 
be seen as a discrete approximation of the rigid rotation of the circle by angle 2πr.

Random cyclic systems — main results To get a sample of the circle one can take a 
random set X = Xn of n points chosen uniformly and independently from S1. What is 
the asymptotic behavior of the cyclic dynamical systems fr : Xn → Xn as n → ∞? Our 
main results analyze the number of periodic points (denoted per(X, r)) and the structure 
of periodic orbits.

Main Theorem. Let Xn be a sample of n points chosen uniformly and independently from 
S1 and let 0 < r ≤ 1.

• The expected fraction of periodic points in fr : Xn → Xn is

lim
n→∞

E[per(Xn, r)]
n

=
{

0 if r is irrational,
1
q if r = p

q is rational.1

• If r is rational, then asymptotically almost surely there is one periodic orbit.
• If r has irrationality exponent 2, then the expected number of periodic points satisfies 

E[per(Xn, r)] = Ω(n1/2−ε) for any ε > 0.

The main theorem is a combination of Theorems 4.6, 4.7, and 5.3.
Our proofs rely on a more refined count of the non-periodic points of dynamical 

system fr. We say a non-periodic point x ∈ X is at level i ≥ 0 if x ∈ f i
r(X) \ f i+1

r (X); 
let levi(X, r) denote the number of non-periodic points at level i. Let Ci be the i-th 
Catalan number, i.e. the number of Dyck paths from (0, 0) to (2i, 0), and let Ci,q−2 be 
the number of Dyck paths of height at most q − 2.

1 Throughout the paper, whenever r is written as r = p
q it is understood that p, q ∈ Z are relatively 

prime.
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