
Applied Mathematics and Computation 296 (2017) 88–100 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Perturbation bounds of generalized inverses 

� 

Lingsheng Meng 

a , Bing Zheng 

a , ∗, Peilan Ma 

b 

a School of Mathematics and Statistics, Lanzhou University, Lanzhou 730 0 0 0, PR China 
b Department of Mathematics, Yili Normal University, Yining 8350 0 0, PR China 

a r t i c l e i n f o 

MSC: 

15A09 

65F20 

Keywords: 

Generalized inverses 

Additive perturbation bound 

Multiplicative perturbation bound 

Distance 

Optimality 

a b s t r a c t 

Let complex matrices A and B have the same sizes. We characterize the generalized in- 

verse matrix B (1, i ) , called an {1, i }-inverse of B for each i = 3 and 4, such that the distance 

between a given {1, i }-inverse of a matrix A and the set of all {1, i }-inverses of the matrix 

B reaches minimum under 2-norm (spectral norm) and Frobenius norm. Similar problems 

are also studied for {1, 2, i }-inverse. In practice, the matrix B is often considered as the 

perturbed matrix of A , and hence based on the previous results, the additive perturbation 

bounds for the {1, i }- and {1, 2, i }-inverses and multiplicative perturbation bounds for the 

{1}-, {1, i }- and {1, 2, i }-inverses are proposed. Numerical examples show that these mul- 

tiplicative perturbation bounds can be achieved respective under 2-norm and Frobenius 

norm. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Let C m × n and C m ×n 
r denote the set of all m × n complex matrices and the subset of C m × n consisting of all matrices 

with rank r , respectively. We use A 

∗, ‖ A ‖ 2 and ‖ A ‖ F respectively stand for the conjugate transpose, the spectral norm and 

the Frobenius norm of a matrix A , and ‖ A ‖ 2, F when either can be used (consistently throughout an expression). As usual, 

I m 

means the identity matrix of order m . Moreover, we also denote the following orthogonal projections, 

P A = AA 

† , P ⊥ A = I m 

− AA 

† , P A ∗ = A 

† A, P ⊥ A ∗ = I n − A 

† A, 

where A ∈ C m × n and A † denotes the Moore–Penrose inverse of A . 

Recall that a generalized inverse G ∈ C n × m of A ∈ C m × n is a matrix which satisfies some of the following four Moore–

Penrose equations [1] : 

(1) AGA = A, (2) GAG = G, (3) (AG ) ∗ = AG, (4) (GA ) ∗ = GA. 

Let { i , j , k } ⊆{1, 2, 3, 4}. Then A { i , j , k } denotes the set of all matrices G which satisfy equations ( i ), ( j ) and ( k ). Any G ∈ A { i , 

j , k } is called an { i , j , k }-inverse of A . For examples, a matrix G of the set A {1} is called a {1}-inverse of A and denoted by 

A 

(1) . Any matrix G in the set A {1, 3} is called a {1, 3}-inverse of matrix A and denoted by A 

(1, 3) , which is also called a least 

squares g-inverse of A since any solution x of the least square problem min x ∈ C n ‖ Ax − b‖ 2 can be represented as x = A 

(1 , 3) b. A 

{1, 4}-inverse of A is denoted by A 

(1, 4) , which is also called a minimum norm g-inverse of A as any minimum norm solution 

x of the consistent linear equation Ax = b can be expressed as x = A 

(1 , 4) b. Similarly, any {1, 2, k }-inverse of A is denoted by 
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A 

(1, 2, k ) , k = 3 , 4 . The unique {1, 2, 3, 4}-inverse of A is denoted by A † , which is called the Moore–Penrose inverse of A . We 

refer the readers to [1] for basic results on generalized inverses. 

Due to the uncertainty or inaccuracy of the data in practical applications such as statistics, numerical computations 

and etc., the perturbation theory of generalized inverses has received considerable attention during the past decades, see 

[1,8–16] and their references therein. However, in these works, most attention was given to the additive perturbation model, 

i.e., A is perturbed to B = A + E, see e.g., [8–16] . As a special additive perturbation model, the multiplicative perturbation 

model, i.e., A ∈ C m × n is perturbed to B = D 

∗
1 
AD 2 , is often encountered in the areas such as numerical analysis and statistics 

etc., and has been considered by some authors, for example, see [3,5–8,10] , where D 1 and D 2 are respectively m × m and n 

× n nonsingular matrices. However, it seems that the perturbation analysis for the nearest {1}-, {1, i }- and {1, 2, i }-inverses 

with respect to the multiplicative perturbation model has not been discussed yet in the literature. In addition, most of the 

existing works were done when the generalized inverse is unique (for example, the Moore–Penrose inverse, group inverse), 

see, e.g., [8,10,12–14,16] . For the case that the generalized inverse is not unique, Liu et al. [9] recently studied the continuity 

properties of {1}-inverses under condition of rank invariant perturbations, and Wei and Ling [15] studied the perturbation 

bounds of {1}-inverses under the additive perturbation model. As the continuous works, in this paper we further undertake 

the perturbation analysis for {1, i }- and {1, 2, i }-inverses of a matrix, i = 3 , 4 . Different from the approaches in [9,15] , our 

discussions are mainly based on the SVD method. Beside the additive perturbation model, the multiplicative perturbation 

model is also included in our consideration. 

The rest of this paper is organized as follows. In Section 2 , we give some lemmas which will be used in the later discus- 

sions. In Section 3 , for any given A 

(1, i ) ∈ A {1, i } ( i = 3 , 4 ) and matrix B ∈ C m × n , we first find a matrix B (1 ,i ) 
m 

∈ B { 1 , i } such that 

B (1 ,i ) 
m 

is the closest matrix to A 

(1, i ) under 2-norm and Frobenius norm using the SVD method; and then similar problems 

are discussed for any given A 

(1, 2, i ) ∈ A {1, 2, i }. The general expressions of the {1, 2, i }-inverses B (1 , 2 ,i ) 
m 

∈ B { 1 , 2 , i } such that 

B (1 , 2 ,i ) 
m 

is the closest matrix to A 

(1, 2, i ) under the Frobenius norm and 2-norm are derived, where i = 3 , 4 . Using the results in 

Section 3, Section 4 gives the additive perturbation bounds for the nearest perturbed {1, i }- and {1, 2, i }-inverses. The multi- 

plicative perturbation bounds for {1}-, {1, i }- and {1, 2, i }-inverses are described in Section 5 . Some numerical examples are 

provided to show that all of the multiplicative perturbation bounds under 2-norm and Frobenius norm are optimal. 

2. Lemmas 

In this section, we present some lemmas which will be used in the following sections. 

Lemma 2.1 [1] . Let A ∈ C m ×n 
r , then the general expressions of {1} -, {1, 3} - and {1, 2, 3} -inverses of A can be written as: 

A { 1 } = { A 

† + A 

† AZ(I m 

− AA 

† ) + (I − A 

† A ) Z : Z ∈ C n ×m } , 
A { 1 , 3 } = { A 

† + (I − A 

† A ) Z : Z ∈ C n ×m } 
and 

A { 1 , 2 , 3 } = { A 

† + (I n − A 

† A ) ZAA 

† : Z ∈ C n ×m } . 
Furthermore, let A = U( 

�1 0 

0 0 
) V ∗ be the singular value decomposition (SVD) of A , where U ∈ C m × m , V ∈ C n × n are unitary 

matrices, and �1 = diag(σ1 , . . . , σr ) . Then the general {1} -inverse of A can be expressed as 

A 

(1) = V 

(
�−1 

1 
K 

L M 

)
U 

∗, (2.1) 

where K , L , M are arbitrary submatrices of appropriate sizes. In particular, K = 0 gives the general {1, 3} -inverse; K = 0 , M = 0 

gives the general {1, 2, 3} -inverse; and the Moore–Penrose inverse is (2.1) with K = 0 , L = 0 and M = 0 . 

Lemma 2.2 [13] . Let A, B = A + E ∈ C m ×n , then 

B 

† − A 

† = −B 

† EA 

† + B 

† (I m 

− AA 

† ) − (I n − B 

† B ) A 

† . (2.2) 

Next lemma, which was originally studied by Davis et al. [4] and recently slightly generalized by Wei and Ling [15] , is 

very useful in the norm-preserving dilation and optimal error estimates. 

Lemma 2.3 [4,15] . Given A ∈ C m × n , B ∈ C p × n , C ∈ C m × q such that ∥∥∥∥
(

A 

B 

)∥∥∥∥
2 

= μ1 and ‖ 

(A, C) ‖ 2 = μ2 , 

and μ = max { μ1 , μ2 } , then there exists D ∈ C p × q such t hat 

min 

D ∈ C p×q 

∥∥∥∥
(

A C 
B D 

)∥∥∥∥
2 

= μ. 
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