The generalized 3-connectivity of graph products*

Hengzhe Li ${ }^{\text {a,* }}$, Yingbin Ma ${ }^{\text {a }}$, Weihua Yang ${ }^{\text {b }}$, Yifei Wang ${ }^{\text {a }}$
${ }^{\text {a C College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, PR China }}$
${ }^{\mathrm{b}}$ Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China

A R T I C L E I N F O

Keywords:

Connectivity
Generalized connectivity
Cartesian product
Lexicographic product

Abstract

The generalized k-connectivity $\kappa_{k}(G)$ of a graph G, which was introduced by Chartrand et al. (1984), is a generalization of the concept of vertex connectivity. For this generalization, the generalized 2-connectivity $\kappa_{2}(G)$ of a graph G is exactly the connectivity $\kappa(G)$ of G. In this paper, let G be a connected graph of order n and let H be a 2-connected graph. For Cartesian product, we show that $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+1$ if $\kappa(G)=\kappa_{3}(G) ; \kappa_{3}(G \square H) \geq$ $\kappa_{3}(G)+2$ if $\kappa(G)>\kappa_{3}(G)$. Moreover, above bounds are sharp. As an example, we show k that $\kappa_{3}(\overbrace{C_{n_{1}} \square C_{n_{2}} \square \cdots C_{n_{k}}})=2 k-1$, where $C_{n_{i}}$ is a cycle. For lexicographic product, we prove that $\kappa_{3}(H \circ G) \geq \max \left\{3 \delta(G)+1,\left\lceil\frac{3 n+1}{2}\right\rceil\right\}$ if $\delta(G)<\frac{2 n-1}{3}$, and $\kappa_{3}(H \circ G)=2 n$ if $\delta(G) \geq \frac{2 n-1}{3}$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

All graphs in this paper are undirected, finite and simple. We refer to the book [1] for graph theoretic notations and terminology not described here. The generalized connectivity of a graph G, which was introduced by Chartrand et al. [2], is a natural and nice generalization of the concept of vertex connectivity.

A tree T is called an S-tree ($\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$-tree) if $S \subseteq V(T)$, where $S=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \in V(G)$. A family of trees $T_{1}, T_{2}, \ldots, T_{r}$ are internally disjoint S-trees if $E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset$ and $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for any pair of integers i and j, where $1 \leq i<j \leq r$. We use $\kappa(S)$ to denote the greatest number of internally disjoint S-trees. For an integer k with $2 \leq k \leq n$, the generalized k-connectivity $\kappa_{k}(G)$ of G is defined as $\min \{\kappa(S) \mid S \in V(G)$ and $|S|=k\}$. Clearly, when $|S|=2, \kappa_{2}(G)$ is nothing new but the connectivity $\kappa(G)$ of G, that is, $\kappa_{2}(G)=\kappa(G)$, which is the reason why one addresses $\kappa_{k}(G)$ as the generalized connectivity of G. By convention, for a connected graph G with less than k vertices, we set $\kappa_{k}(G)=1$. For any graph G, clearly, $\kappa(G) \geq 1$ if and only if $\kappa_{3}(G) \geq 1$.

In addition to being a natural combinatorial measure, the generalized connectivity can be motivated by its interesting interpretation in practice. For example, suppose that G represents a network. If one considers to connect a pair of vertices of G, then a path is used to connect them. However, if one wants to connect a set S of vertices of G with $|S| \geq 3$, then a tree has to be used to connect them. This kind of tree with minimum order for connecting a set of vertices is usually called a Steiner tree, and popularly used in the physical design of VLSI, see [17]. Usually, one wants to consider how tough a network can be, for the connection of a set of vertices. Then, the number of totally independent ways to connect them is a measure for this purpose. The generalized k-connectivity can serve for measuring the capability of a network G to connect any k vertices in G.

[^0]Determining $\kappa_{k}(G)$ for general graph is non-trivial problem. In [7], Li and Li derived that for any fixed integer $k \geq 2$, given a graph G and a subset S of $V(G)$, deciding whether there are k internally disjoint trees connecting S, namely deciding whether $\kappa(S) \geq k$, is NP-complete. The exact values of $\kappa_{k}(G)$ are known for only a small class of graphs, examples are complete graphs [3], complete bipartite graphs [6], complete equipartition 3-partite graphs [9], star graphs and bubble-sort graphs [10], Cayley graphs generated by trees and cycles [11] connected Cayley graphs on Abelian groups with small degrees [18]. Upper bounds and lower bounds of generalized connectivity of a graph have been investigated by Li et al. [4,8,14] and Li and Mao [15]. Extremal problem have been investigated by Li et al. [12,13]. We refer the readers to [16] for more results.

In [3], Chartrandet al. determined generalized k-connectivity of complete graphs.
Theorem 1 [3]. For every two integers n and k with $2 \leq k \leq n, \kappa_{k}\left(K_{n}\right)=n-\left\lceil\frac{k}{2}\right\rceil$.
In [8], Li et al. showed the following upper bound of generalized 3-connectivity of a graph.
Theorem 2 [8]. Let G be a connected graph with at least three vertices. If G has two adjacent vertices with minimum degree δ, then $\kappa_{3}(G) \leq \delta-1$.

Theorem 3 [8]. Let G be a connected graph with n vertices. Then $\kappa_{3}(G) \leq \kappa(G)$. Moreover, the upper bound is sharp.
In [5], Li et al. obtained the following upper bound of k-connectivity of a graph.
Theorem 4 [5]. For any graph G with order at least k,

$$
\kappa_{k}(G) \leq \min _{S \subseteq V(G),|S|=k}\left\lfloor\frac{1}{k-1}|E(G[S])|+\frac{1}{k}|E[S, \bar{S}]|\right\rfloor,
$$

where $S \subseteq V(G)$ with $|S|=k$, and $\bar{S}=V(G) \backslash S$. Moreover, the bound is sharp.
In [4], Li et al. studied the generalized 3-connectivity of Cartesian product graphs and showed the following result.
Theorem 5 [4]. Let G and H be connected graphs such that $\kappa_{3}(G) \geq \kappa_{3}(H)$. The following assertions hold:
(i) If $\kappa(G)=\kappa_{3}(G)$, then $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+\kappa_{3}(H)-1$. Moreover, the bound is sharp;
(ii) If $\kappa(G)>\kappa_{3}(G)$, then $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+\kappa_{3}(H)$. Moreover, the bound is sharp.

Note that above bounds are not sharp for some graph class, for example, cycles. For two cycles C_{1} and C_{2} with length 3, we know that $\kappa\left(C_{1}\right)=\kappa_{3}\left(C_{1}\right)=1$ and $\kappa\left(C_{2}\right)=\kappa_{3}\left(C_{2}\right)=1$. Thus $\kappa_{3}\left(C_{1} \square C_{2}\right) \geq 1$ by Theorem 5 . In fact, it is not difficult to check that $\kappa_{3}\left(C_{1} \square C_{2}\right)=3$. Therefore, it is meaningful to investigate the generalized 3-connectivity of the Cartesian product of a graph and a 2 -connected graph.

In [15], Li and Mao studied the generalized 3-connectivity of the lexicographic product graphs and obtained the following result.

Theorem 6 [15]. Let G and H be two connected graphs. Then $\kappa_{3}(G \circ H) \geq \kappa_{3}(G)|V(G)|$. Moreover, the bound is sharp.
It is easy to check that this result is also not sharp for the lexicographic product of two cycles with length 3 . Therefore, it is also meaningful to investigate the generalized 3-connectivity of the lexicographic product of a graph and a 2-connected graph.

This paper is organized as follows. In Section 2, we introduce some definitions and notations. In Section 3, we investigate the generalized 3-connectivity of the Cartesian product of a graph and a 2-connected graph. In Section 4, we investigate the generalized 3-connectivity of the lexicographic product of a graph and a 2-connected graph.

2. Definitions and notations

We use P_{n} to denote a path with n vertices. A path P is called a $u-v$ path, denoted by $P_{u v}$, if u and v are the endpoints of P. Let C be a cycle with vertex set $V(C)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$. Two vertices v_{i} and v_{j} are adjacent if and only if $|i-j|=1(\bmod n)$. We use $P_{v_{i}} v_{j}$ and $P_{v_{j} v_{i}}$ to denote the path $v_{i} v_{i+1} \ldots v_{j}$ and $v_{j} v_{j+1} \ldots v_{i}$, respectively.

Recall that the Cartesian product (also called the square product) of two graphs G and H, written as $G \square H$, is the graph with vertex set $V(G) \times V(H)$, in which two vertices (u, v) and (u^{\prime}, v^{\prime}) are adjacent if and only if $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or $v=v^{\prime}$ and $u u^{\prime} \in E(G)$. Clearly, the Cartesian product is commutative, that is, $G \square H \cong H \square G$.

Let G and H be two graphs with $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, respectively. We use $G\left(u_{j}, v_{i}\right)$ to denote the subgraph of $G \square H$ induced by the set $\left\{\left(u_{j}, v_{i}\right) \mid 1 \leq j \leq n\right\}$. Similarly, we use $H\left(u_{j}, v_{i}\right)$ to denote the subgraph of $G \square H$ induced by the set $\left\{\left(u_{j}, v_{i}\right) \mid 1 \leq i \leq m\right\}$. It is easy to see $G\left(u_{j_{1}}, v_{i}\right)=G\left(u_{j_{2}}, v_{i}\right)$ for different $u_{j_{1}}$ and $u_{j_{2}}$ of G. Thus, we can replace $G\left(u_{j}, v_{i}\right)$ by $G^{v_{i}}$ for simplicity. Similarly, we can replace $H\left(u_{j}, v_{i}\right)$ by $H^{u_{j}}$. The following serval mappings are particularly useful for our proofs.

Given a vertex $v_{a} \in V(H)$, define

$$
u^{v_{a}}:=\left(u, v_{a}\right) \text { for any vertex } u \in V(G),
$$

$$
G_{1}^{v_{a}}:=\left(V\left(G_{1}^{v_{a}}\right), E\left(G_{1}^{v_{a}}\right)\right) \text { for any subgraph } G_{1} \subseteq G,
$$

https://daneshyari.com/en/article/4625480

Download Persian Version:
https://daneshyari.com/article/4625480

Daneshyari.com

[^0]: ㅎ The research was supported by NSFC 11401181 and 11526082, and the Scientific Research Foundation for Ph.D. of Henan Normal University qd13042.

 * Corresponding author.

 E-mail addresses: lhz@htu.cn, hengzhe_li@126.com (H. Li).

