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a b s t r a c t 

The generalized k -connectivity κk ( G ) of a graph G , which was introduced by Chartrand 

et al. (1984), is a generalization of the concept of vertex connectivity. For this generaliza- 

tion, the generalized 2-connectivity κ2 ( G ) of a graph G is exactly the connectivity κ( G ) of 

G . In this paper, let G be a connected graph of order n and let H be a 2-connected graph. 

For Cartesian product, we show that κ3 (G �H) ≥ κ3 (G ) + 1 if κ(G ) = κ3 (G ) ; κ3 (G �H) ≥
κ3 (G ) + 2 if κ( G ) > κ3 ( G ). Moreover, above bounds are sharp. As an example, we show 

that κ3 ( 

k ︷ ︸︸ ︷ 
C n 1 �C n 2 � · · ·C n k ) = 2 k − 1 , where C n i is a cycle. For lexicographic product, we prove 

that κ3 (H ◦ G ) ≥ max { 3 δ(G ) + 1 , � 3 n +1 
2 

�} if δ(G ) < 

2 n −1 
3 

, and κ3 (H ◦ G ) = 2 n if δ(G ) ≥ 2 n −1 
3 

. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

All graphs in this paper are undirected, finite and simple. We refer to the book [1] for graph theoretic notations and 

terminology not described here. The generalized connectivity of a graph G , which was introduced by Chartrand et al. [2] , is 

a natural and nice generalization of the concept of vertex connectivity. 

A tree T is called an S-tree ( { u 1 , u 2 , . . . , u k } -tree ) if S ⊆ V ( T ), where S = { u 1 , u 2 , . . . , u k } ∈ V (G ) . A family of trees 

T 1 , T 2 , . . . , T r are internally disjoint S-trees if E(T i ) ∩ E(T j ) = ∅ and V (T i ) ∩ V (T j ) = S for any pair of integers i and j , where 

1 ≤ i < j ≤ r . We use κ( S ) to denote the greatest number of internally disjoint S -trees. For an integer k with 2 ≤ k ≤ n , the 

generalized k - connect i v it y κk (G ) of G is defined as min { κ(S) | S ∈ V (G ) and | S| = k } . Clearly, when | S| = 2 , κ2 ( G ) is nothing 

new but the connectivity κ( G ) of G , that is, κ2 (G ) = κ(G ) , which is the reason why one addresses κk ( G ) as the generalized 

connectivity of G . By convention, for a connected graph G with less than k vertices, we set κk (G ) = 1 . For any graph G , 

clearly, κ( G ) ≥ 1 if and only if κ3 ( G ) ≥ 1. 

In addition to being a natural combinatorial measure, the generalized connectivity can be motivated by its interesting 

interpretation in practice. For example, suppose that G represents a network. If one considers to connect a pair of vertices 

of G , then a path is used to connect them. However, if one wants to connect a set S of vertices of G with | S | ≥ 3, then 

a tree has to be used to connect them. This kind of tree with minimum order for connecting a set of vertices is usually 

called a Steiner tree, and popularly used in the physical design of VLSI, see [17] . Usually, one wants to consider how tough 

a network can be, for the connection of a set of vertices. Then, the number of totally independent ways to connect them is 

a measure for this purpose. The generalized k -connectivity can serve for measuring the capability of a network G to connect 

any k vertices in G . 
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Determining κk ( G ) for general graph is non-trivial problem. In [7] , Li and Li derived that for any fixed integer k ≥ 2, 

given a graph G and a subset S of V ( G ), deciding whether there are k internally disjoint trees connecting S , namely deciding 

whether κ( S ) ≥ k , is NP-complete. The exact values of κk ( G ) are known for only a small class of graphs, examples are 

complete graphs [3] , complete bipartite graphs [6] , complete equipartition 3-partite graphs [9] , star graphs and bubble-sort 

graphs [10] , Cayley graphs generated by trees and cycles [11] connected Cayley graphs on Abelian groups with small degrees 

[18] . Upper bounds and lower bounds of generalized connectivity of a graph have been investigated by Li et al. [4,8,14] and 

Li and Mao [15] . Extremal problem have been investigated by Li et al. [12,13] . We refer the readers to [16] for more results. 

In [3] , Chartrandet al. determined generalized k -connectivity of complete graphs. 

Theorem 1 [3] . For every two integers n and k with 2 ≤ k ≤ n , κk (K n ) = n − � k 2 � . 
In [8] , Li et al. showed the following upper bound of generalized 3-connectivity of a graph. 

Theorem 2 [8] . Let G be a connected graph with at least three vertices. If G has two adjacent vertices with minimum degree δ, 

then κ3 (G ) ≤ δ − 1 . 

Theorem 3 [8] . Let G be a connected graph with n vertices. Then κ3 ( G ) ≤ κ( G ) . Moreover, the upper bound is sharp. 

In [5] , Li et al. obtained the following upper bound of k -connectivity of a graph. 

Theorem 4 [5] . For any graph G with order at least k , 

κk (G ) ≤ min 

S⊆V (G ) , | S| = k 

⌊ 

1 

k − 1 

| E (G [ S]) | + 

1 

k 
| E [ S, S̄ ] | 

⌋ 

, 

where S ⊆V ( G ) with | S| = k, and S̄ = V (G ) \ S. Moreover, the bound is sharp. 

In [4] , Li et al. studied the generalized 3-connectivity of Cartesian product graphs and showed the following result. 

Theorem 5 [4] . Let G and H be connected graphs such that κ3 ( G ) ≥ κ3 ( H ) . The following assertions hold: 

(i) If κ(G ) = κ3 (G ) , then κ3 (G �H) ≥ κ3 (G ) + κ3 (H) − 1 . Moreover, the bound is sharp; 

(ii) If κ( G ) > κ3 ( G ), then κ3 (G �H) ≥ κ3 (G ) + κ3 (H) . Moreover, the bound is sharp. 

Note that above bounds are not sharp for some graph class, for example, cycles. For two cycles C 1 and C 2 with length 

3, we know that κ(C 1 ) = κ3 (C 1 ) = 1 and κ(C 2 ) = κ3 (C 2 ) = 1 . Thus κ3 (C 1 �C 2 ) ≥ 1 by Theorem 5 . In fact, it is not difficult to 

check that κ3 (C 1 �C 2 ) = 3 . Therefore, it is meaningful to investigate the generalized 3-connectivity of the Cartesian product 

of a graph and a 2-connected graph. 

In [15] , Li and Mao studied the generalized 3-connectivity of the lexicographic product graphs and obtained the following 

result. 

Theorem 6 [15] . Let G and H be two connected graphs. Then κ3 ( G ◦H ) ≥ κ3 ( G )| V ( G )| . Moreover, the bound is sharp. 

It is easy to check that this result is also not sharp for the lexicographic product of two cycles with length 3. Therefore, 

it is also meaningful to investigate the generalized 3-connectivity of the lexicographic product of a graph and a 2-connected 

graph. 

This paper is organized as follows. In Section 2 , we introduce some definitions and notations. In Section 3 , we investigate 

the generalized 3-connectivity of the Cartesian product of a graph and a 2-connected graph. In Section 4 , we investigate the 

generalized 3-connectivity of the lexicographic product of a graph and a 2-connected graph. 

2. Definitions and notations 

We use P n to denote a path with n vertices. A path P is called a u-v path , denoted by P u v , if u and v are the endpoints of P . 

Let C be a cycle with vertex set V (C) = { v 0 , v 1 , . . . , v n −1 } . Two vertices v i and v j are adjacent if and only if | i − j| = 1( mod n ) . 

We use P v i v j and P v j v i to denote the path v i v i +1 . . . v j and v j v j+1 . . . v i , respectively. 

Recall that the Cartesian product (also called the square product ) of two graphs G and H , written as G �H, is the graph 

with vertex set V ( G ) × V ( H ), in which two vertices (u, v ) and (u ′ , v ′ ) are adjacent if and only if u = u ′ and vv ′ ∈ E(H) , or 

v = v ′ and uu ′ ∈ E ( G ). Clearly, the Cartesian product is commutative, that is, G �H 

∼= 

H�G . 

Let G and H be two graphs with V (G ) = { u 1 , u 2 , . . . , u n } and V (H) = { v 1 , v 2 , . . . , v m 

} , respectively. We use G (u j , v i ) to 

denote the subgraph of G �H induced by the set { (u j , v i ) | 1 ≤ j ≤ n } . Similarly, we use H(u j , v i ) to denote the subgraph of 

G �H induced by the set { (u j , v i ) | 1 ≤ i ≤ m } . It is easy to see G (u j 1 , v i ) = G (u j 2 , v i ) for different u j 1 and u j 2 of G . Thus, we 

can replace G (u j , v i ) by G 

v i for simplicity. Similarly, we can replace H(u j , v i ) by H 

u j . The following serval mappings are 

particularly useful for our proofs. 

Given a vertex v a ∈ V (H) , define 

u 

v a := (u, v a ) for any vertex u ∈ V (G ) , 

G 

v a 
1 

:= (V (G 

v a 
1 

) , E(G 

v a 
1 

)) for any subgraph G 1 ⊆ G, 
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