
Applied Mathematics and Computation 291 (2016) 197–206 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Estimating the state probability distribution for epidemic 

spreading in complex networks 

Alexander Schaum 

a , ∗, Roberto Bernal Jaquez 

b 

a Chair of Automatic Control, Christian-Albrechts-University Kiel, Kaiserstr.2, Kiel 24143, Germany 
b Department of Applied Mathematics and Systems, Universidad Autonoma Metropolitana - Cuajimalpa, Av. Vasco de Quiroga 4871, 

Cuajimalpa de Morelos, Santa Fe Cuajimalpa, Ciudad de México, D.F. 05348, Mexico 

a r t i c l e i n f o 

Keywords: 

Complex networks 

Spreading dynamics 

State estimation 

Sensor location 

Process monitoring 

a b s t r a c t 

The problem of state estimation of spreading phenomena in complex networks is consid- 

ered on the basis of a detectability-based approach. Using a simple, reduced model based 

state distribution estimator, where the monitored nodes are driven directly by the mea- 

sured data, asymptotic convergence conditions are provided in terms of the number and 

location of the required sensors on the basis of the network topology. The convergence of 

the estimator is established in terms of the largest eigenvalue of a reduced connectivity 

matrix which stems from removing the monitored nodes and their connections from the 

original graph. In the case of unit weights, this condition corresponds to measuring the 

nodes with highest degree. Numerical simulations for a complete and a scale-free network 

each of 500 nodes and randomly distributed and unit weights, respectively, illustrate the 

estimator functioning with 20 sensors for the complete, and 38 sensors for the scale-free 

network. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Epidemic spreading has become a subject of increasing attention during the last years, with fundamental and important 

breakthroughs in modeling and simulation [1–9] as well as in control or immunization perspectives [10–13] . The considered 

spreading phenomena may include classical virus outbreaks [6,12,14] , computer viruses [15,16] or even tobacco epidemics 

[17] . State estimation in complex networks in general and for spreading dynamics in particular has in turn achieved less 

attention. Having a reliable estimate of the state probability distribution for a spreading process in a complex network is of 

great benefit for the monitoring of epidemics and the determination of corresponding vaccination policies and implemen- 

tation of adequate control strategies. One major burden relies in the complex evaluation of observability properties and the 

question on how to exploit them for adequate estimation algorithms is by no means a trivial one. In particular, this involves 

a good model of the process dynamics and the decision on which states in the network have to be measured or monitored. 

Particular studies and methods for the sensor location problem (and the dual problem of network controllability) have 

been provided for linear network dynamics in [18–20] on the basis of the system observability, a property which allows for 

the determination of the complete state on the basis of the knowledge of the measurement data over some arbitrary time 

interval. These approaches involve complex graph-theoretic algorithms for the determination of the underlying matchings 
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Fig. 1. State automaton for the SIS dynamics of a single node i . 

in the graph. The observability of the system dynamics opens the way for several well-studied observer design approaches. 

Nevertheless, most of these approaches break down in absence of system observability. 

Considering nonlinear spreading dynamics with changing interactions and unknown interaction weights in complex net- 

works [1–4] implies that these approaches cannot be applied directly to the problem of interest but require some crucial 

simplifications. In particular, it is necessary to linearize the system dynamics around some equilibrium point, but this make 

it impossible to determine the exact domain of stability for the observer (i.e. the region in state space over which the state 

can be reconstructed) and completely breaks down when complex attractors, like limit cycles or higher order periodic or 

non-periodic attractor sets are present. 

On the other hand, it is known from state estimation theory that a fundamental property underlying any state estima- 

tor (or observer) is the detectability property [21–23] , i.e. the possibility of uniquely determining (maybe asymptotically) 

the state of a system on the basis of the measured output (and input) data over a sufficiently long (maybe infinite) time 

interval. Some observer design approaches, like the dissipativity-based observer [24–26] , do not require the observability of 

the system, but involve calculations of an adequate model-dependent prediction–correction mechanism, which is hard to 

achieve if unknown interaction structures are at play. A possible modification consists in considering these interactions as 

completely unknown and employ the robust extensions of these approaches called unknown-input observers [26–28] . 

Another approach used in the context of distillation columns [29,30] and systems described by semi-linear parabolic 

partial differential equations [31] consists in restricting the possible solution space for the observer by directly imposing 

the measurement data in form of algebraic constraints. This approach has turned out to have a good performance when the 

system is detectable. 

These considerations motivate the present study dealing with the observer design for a class of epidemic spreading mod- 

els in complex networks based on the detectability properties of the system. For this purpose, first the Markov-chain based 

model for a Susceptible-Infectious-Susceptible (SIS) dynamics over complex networks is recalled [1,4,10] and conditions for 

detectability under time-varying and partially unknown interaction weights are derived. Based on these conditions, an ob- 

server design is proposed which takes into account only structural and statistical information about the interconnection 

structure and can deal with partially unknown network topologies (up to the degree of each node). The proposed design 

method is illustrated for a scale-free network with unit weights and a complete network with randomly time-varying con- 

nection weights, each with 500 nodes. 

2. Problem formulation 

Consider a network of N nodes distributed along a graph � = (E, V) with edge set E and vertex set V = { v 1 , . . . , v N } , 
where each node represents an agent which can be either susceptible to infection or infectious itself. Each node v i , i = 

1 , . . . , N is connected with κ i neighbors. Self-loops are excluded from the network. The underlying state automaton for a 

single agent is shown in Fig. 1 . Note that the transition probability from susceptible to infectious depends on the actual 

probabilities of all neighbors. 

These dynamics have been modeled using discrete-time Markov-chain-based dynamical systems in [1,4] and here a 

continuous-time equivalent is considered. The modeling equations are 

˙ p i (t) = −μp i (t) + (1 − p i (t)) 

( 

1 −
N ∏ 

j=1 

(1 − r i j (t ) βp j (t )) 

) 

, i = 1 , . . . , N (1a) 

y k (t) = p i k (t) , i k ∈ M , k = 1 , . . . , m. (1b) 

Here, p i ∈ [0, 1] is the probability of node i to be infected, μ > 0 is the recovery rate from infection, r ij ∈ [0, 1] is the 

connectivity weight of node i with node j , r ii = 0 , β ∈ [0, 1] is the infection probability, i.e. the probability that a contact of 

an infected agent with a susceptible one yields infection, and y k is the k th measurement, which is given by the probability 

of agent k l to be infectious, where the k l are the monitored nodes (to be identified). The set of all monitored nodes is given 

by M . 
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