On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas

Chao-Ping Chen ${ }^{\mathrm{a}, *}$, Richard B. Paris ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, Henan, China
${ }^{\mathrm{b}}$ Division of Computing and Mathematics, University of Abertay, Dundee DD1 1HG, UK

A R T I C L E I N F O

Keywords:

Gamma function
Psi function
Euler-Mascheroni constant
Asymptotic expansion
Wallis sequence

ABSTRACT
For all integers $n \geq 1$, let

$$
W_{n}(p, q)=\prod_{j=1}^{n}\left\{e^{-p / j}\left(1+\frac{p}{j}+\frac{q}{j^{2}}\right)\right\}
$$

and

$$
R_{n}(p, q)=\prod_{j=1}^{n}\left\{e^{-p /(2 j-1)}\left(1+\frac{p}{2 j-1}+\frac{q}{(2 j-1)^{2}}\right)\right\}
$$

where p, q are complex parameters. The infinite product $W_{\infty}(p, q)$ includes the Wallis and Wilf formulas, and also the infinite product definition of Weierstrass for the gamma function, as special cases. In this paper, we present asymptotic expansions of $W_{n}(p, q)$ and $R_{n}(p$, $q)$ as $n \rightarrow \infty$. In addition, we also establish asymptotic expansions for the Wallis sequence.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The famous Wallis sequence W_{n}, defined by

$$
\begin{equation*}
W_{n}=\prod_{k=1}^{n} \frac{4 k^{2}}{4 k^{2}-1} \quad(n \in \mathbb{N}:=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

has the limiting value

$$
\begin{equation*}
W_{\infty}=\prod_{k=1}^{\infty} \frac{4 k^{2}}{4 k^{2}-1}=\frac{\pi}{2} \tag{1.2}
\end{equation*}
$$

established by Wallis in 1655; see [5, p. 68]. Several elementary proofs of this well-known result can be found in [3,23,37]. An interesting geometric construction that produces the above limiting value can be found in Myerson [30]. Many formulas exist for the representation of π, and a collection of these formulas is listed [33,34]. For more history of π see $[2,4,5,14]$.

[^0]The following infinite product definition for the gamma function is due to Weierstrass (see, for example, [1, p. 255, Entry (6.1.3)]):

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{n=1}^{\infty}\left\{e^{-z / n}\left(1+\frac{z}{n}\right)\right\} \tag{1.3}
\end{equation*}
$$

where γ denotes the Euler-Mascheroni constant defined by

$$
\gamma:=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right)=0.5772156649 \ldots
$$

In 1997, Wilf [39] posed the following elegant infinite product formula as a problem:

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left\{e^{-1 / j}\left(1+\frac{1}{j}+\frac{1}{2 j^{2}}\right)\right\}=\frac{e^{\pi / 2}+e^{-\pi / 2}}{\pi e^{\gamma}} \tag{1.4}
\end{equation*}
$$

which contains three of the most important mathematical constants, namely π, e and γ. Subsequently, Choi and Seo [12] proved (1.4), together with three other similar product formulas, by making use of well-known infinite product formulas for the circular and hyperbolic functions and the familiar Stirling formula for the factorial function.

In 2003, Choi et al. [11] presented the following two general infinite product formulas, which include Wilf's formula (1.4) and other similar formulas in Choi and Seo [12] as special cases:

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left\{e^{-1 / j}\left(1+\frac{1}{j}+\frac{\alpha^{2}+1 / 4}{j^{2}}\right)\right\}=\frac{2\left(e^{\pi \alpha}+e^{-\pi \alpha}\right)}{\left(4 \alpha^{2}+1\right) \pi e^{\gamma}} \quad\left(\alpha \in \mathbb{C} ; \alpha \neq \pm \frac{1}{2} i\right) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left\{e^{-2 / j}\left(1+\frac{2}{j}+\frac{\beta^{2}+1}{j^{2}}\right)\right\}=\frac{e^{\pi \beta}-e^{-\pi \beta}}{2 \beta\left(\beta^{2}+1\right) \pi e^{2 \gamma}} \quad(\beta \in \mathbb{C} \backslash\{0\} ; \beta \neq \pm i) \tag{1.6}
\end{equation*}
$$

where $i=\sqrt{-1}$ and \mathbb{C} denotes the set of complex numbers. In 2013, Chen and Choi [7] presented a more general infinite product formula that included the formulas (1.5) and (1.6) as special cases:

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left\{e^{-p / j}\left(1+\frac{p}{j}+\frac{q}{j^{2}}\right)\right\}=\frac{e^{-p \gamma}}{\Gamma\left(1+\frac{1}{2} p+\frac{1}{2} \Delta\right) \Gamma\left(1+\frac{1}{2} p-\frac{1}{2} \Delta\right)} \tag{1.7}
\end{equation*}
$$

and also another interesting infinite product formula:

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left\{e^{-p /(2 j-1)}\left(1+\frac{p}{2 j-1}+\frac{q}{(2 j-1)^{2}}\right)\right\}=\frac{2^{-p} \pi e^{-p \gamma / 2}}{\Gamma\left(\frac{1}{2}+\frac{1}{4} p+\frac{1}{4} \Delta\right) \Gamma\left(\frac{1}{2}+\frac{1}{4} p-\frac{1}{4} \Delta\right)} \tag{1.8}
\end{equation*}
$$

where $p, q \in \mathbb{C}$ and $\Delta:=\sqrt{p^{2}-4 q}$.
The formula (1.7) can be seen to include the formulas (1.2)-(1.6) as special cases. By setting $(p, q)=(0,-1 / 4)$ in (1.7), we have

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left(1-\frac{1}{4 j^{2}}\right)=\frac{2}{\pi} \tag{1.9}
\end{equation*}
$$

whose reciprocal becomes the Wallis product (1.2). Also setting $q=0$ in (1.7), we obtain

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left\{e^{-p / j}\left(1+\frac{p}{j}\right)\right\}=\frac{e^{-p \gamma}}{\Gamma(p+1)} \tag{1.10}
\end{equation*}
$$

Noting that $\Gamma(z+1)=z \Gamma(z)$ and replacing p by z in (1.10) we recover the Weierstrass formula (1.3). Setting $(p, q)=(1,1 / 2)$ in (1.7) yields the Wilf formula (1.4) and setting

$$
\begin{equation*}
(p, q)=\left(1, \alpha^{2}+\frac{1}{4}\right) \quad \text { and } \quad(p, q)=\left(2, \beta^{2}+1\right) \tag{1.11}
\end{equation*}
$$

in (1.7) yields the formulas (1.5) and (1.6), respectively.
With $(p, q)=(-1,1 / 4)$ in (1.7), we obtain the beautiful infinite product formula expressed in terms of the most important constants π, e and γ, namely

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left\{e^{1 / j}\left(1-\frac{1}{2 j}\right)^{2}\right\}=\frac{e^{\gamma}}{\pi} \tag{1.12}
\end{equation*}
$$

https://daneshyari.com/en/article/4625553

Download Persian Version:
https://daneshyari.com/article/4625553

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: chenchaoping@sohu.com (C.-P. Chen), R.Paris@abertay.ac.uk (R.B. Paris).

