Approximation by (p, q)-Baskakov-Beta operators

Neha Malik*, Vijay Gupta

Department of Mathematics, Netaji Subhas Institute of Technology, Sector 3 Dwarka, New Delhi 110078, India

A R T I C L E I N F O

Keywords:

(p, q)-Beta function
(p, q)-Gamma function

Abstract

In the present paper, we consider (p, q)-analogue of the Baskakov-Beta operators and using it, we estimate some direct results on approximation. Also, we represent the convergence of these operators graphically using MATLAB.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Approximation theory has been an engaging field of research with abstract approximation to the core (cf. [15]). Varied operators with their approximation properties, mainly the quantitative one, have been discussed and studied by many researchers. It has been seen that the generalizations of several well-known operators to quantum-calculus (q-calculus) were introduced in the last three decades and their approximation behavior were also discussed (see [3,10-12]). Further generalization of quantum variant is the post-quantum calculus, denoted by (p, q)-calculus. Very recently, some researchers studied in this direction (see $[4,9,17]$). Few basic definitions and notations mentioned below may be found in these papers and references therein.

The (p, q)-numbers are given by

$$
\begin{aligned}
{[n]_{p, q} } & :=p^{n-1}+p^{n-2} q+p^{n-3} q^{2}+\cdots+p q^{n-2}+q^{n-1} \\
& =\left\{\begin{array}{cl}
\frac{p^{n}-q^{n}}{p-q}, & \text { if } p \neq q \neq 1 \\
n, & \text { if } p=q=1 .
\end{array}\right.
\end{aligned}
$$

The (p, q)-factorial is given by $[n]_{p, q}!=\prod_{r=1}^{n}[r]_{p, q}, \quad n \geqslant 1, \quad[0]_{p, q}!=1$. The (p, q)-binomial coefficient satisfies

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]_{p, q}=\frac{[n]_{p, q}!}{[n-r]_{p, q}![r]_{p, q}!}, \quad 0 \leqslant r \leqslant n
$$

Let n be a non-negative integer, the (p, q)-Gamma function is defined as

$$
\Gamma_{p, q}(n+1)=\frac{(p \ominus q)_{p, q}^{n}}{(p-q)^{n}}=[n]_{p, q}!, \quad 0<q<p
$$

where $(p \ominus q)_{p, q}^{n}=(p-q)\left(p^{2}-q^{2}\right)\left(p^{3}-q^{3}\right) \cdots\left(p^{n}-q^{n}\right)$.
The (p, q)-integral for $0<q<p \leq 1$ (generalized Jackson integral) is defined as

$$
\begin{equation*}
\int_{0}^{a} f(x) d_{p, q} x=(p-q) a \sum_{i=0}^{\infty} \frac{q^{i}}{p^{i+1}} f\left(\frac{a q^{i}}{p^{i+1}}\right), \quad x \in[0, a] . \tag{1}
\end{equation*}
$$

[^0]By simple computation, we get

$$
\int_{0}^{a} x^{n} d_{p, q} x=\frac{a^{n+1}}{[n+1]_{p, q}} .
$$

Also, the integral (1) includes the nodes $x_{i}=x_{i}(p, q)=\frac{a q^{i}}{p^{i+1}}, \quad i=0,1, \ldots$, geometrically distributed in $(0,+\infty)$, not only in ($0, a$), as in the case $p=1$ (standard Jackson's q-integral). Moreover, one may observe that only a finite number of nodes in (1) are outside ($0, a$), i.e., those x_{i} for which $q^{i}>p^{i+1}$. Thus, the above definition of (p, q)-integral may be well utilized to define the (p, q)-extensions of well-known results.

For $m, n \in \mathbb{N}$, the (p, q)-Beta function of second kind considered in [2] is given by

$$
B_{p, q}(m, n)=\int_{0}^{\infty} \frac{t^{m-1}}{(1 \oplus p t)_{p, q}^{m+n}} d_{p, q} t
$$

where the (p, q)-power basis is given by

$$
(1 \oplus p t)_{p, q}^{m+n}=(1+p t)(p+p q t)\left(p^{2}+p q^{2} t\right) \ldots\left(p^{m+n-1}+p q^{m+n-1} t\right)
$$

Using the (p, q)-integration by parts:

$$
\int_{a}^{b} f(p x) D_{p, q} g(x) d_{p, q} x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g(q x) D_{p, q} f(x) d_{p, q} x
$$

it was shown in [2] that the following relation is satisfied by the (p, q)-analogues of Beta and Gamma functions:

$$
B_{p, q}(m, n)=\frac{q \Gamma_{p, q}(m) \Gamma_{p, q}(n)}{\left(p^{m+1} q^{m-1}\right)^{m / 2} \Gamma_{p, q}(m+n)}
$$

As a special case, if $p=q=1, B(m, n)=\Gamma(m) \Gamma(n) / \Gamma(m+n)$. It may be observed that in (p, q)-setting, order is important, which is the reason why (p, q)-variant of Beta function does not satisfy commutativity property, i.e., $B_{p, q}(m, n) \neq B_{p, q}(n, m)$.

For $n \in \mathbb{N}, x \in[0, \infty)$ and $0<q<p \leq 1$, the (p, q)-analogue of Baskakov operators can be defined as

$$
B_{n, p, q}(f, x)=\sum_{k=0}^{\infty} b_{n, k}^{p, q}(x) f\left(\frac{p^{n-1}[k]_{p, q}}{q^{k-1}[n]_{p, q}}\right),
$$

where (p, q)-Baskakov basis function is given by

$$
b_{n, k}^{p, q}(x)=\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{p, q} p^{k+n(n-1) / 2} q^{k(k-1) / 2} \frac{x^{k}}{(1 \oplus x)_{p, q}^{n+k}} .
$$

Gupta [9] considered this form of (p, q)-Baskakov operators while studying its Kantorovich variant. This form was also considered by T. Acar et al. [5].

Remark 1. It has been observed in [9] that the (p, q)-Baskakov operators satisfy the following recurrence relation:

$$
[n]_{p, q} T_{n, m+1}^{p, q}(q x)=q p^{n-1} x(1+p x) D_{p, q}\left[T_{n, m}^{p, q}(x)\right]+[n]_{p, q} q x T_{n, m}^{p, q}(q x)
$$

where $T_{n, m}^{p, q}(x):=B_{n, p, q}\left(e_{m}, x\right)=\sum_{k=0}^{\infty} b_{n, k}^{p, q}(x)\left(\frac{p^{n-1}[k]_{p, q}}{q^{k-1}[n]_{p, q}}\right)^{m}$.
Then, we have

$$
\begin{aligned}
& B_{n, p, q}\left(e_{0}, x\right)=1, \quad B_{n, p, q}\left(e_{1}, x\right)=x \\
& B_{n, p, q}\left(e_{2}, x\right)=\frac{[n+1]_{p, q} x^{2}+p^{n-1} q x}{q[n]_{p, q}},
\end{aligned}
$$

where $e_{i}(t)=t^{i}, i=0,1,2$. In case $p=1$, we get the q-Baskakov operators [1,11]. If $p=q=1$, then these operators reduce to the well-known Baskakov operators.

2. Construction of operators and moments

In the year 1985, Sahai-Prasad [16] introduced the Durrmeyer variant of the well-known Baskakov operators. However, there were some technical problems in the main estimates of [16], which were later improved by Sinha et al. [19]. In this continuation, in 1994, Gupta proposed yet another Durrmeyer type generalization of Baskakov operators by taking the weights of Beta basis function. The operators discussed in [8] provide better approximation in simultaneous approximation than the usual Baskakov-Durrmeyer operators, studied in [19]. This motivated us to study further in this direction and here, we propose the (p, q)-variant of Baskakov-Beta operators.

https://daneshyari.com/en/article/4625555

Download Persian Version:
https://daneshyari.com/article/4625555

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: neha.malik_nm@yahoo.com (N. Malik), vijaygupta2001@hotmail.com (V. Gupta).

