Singularity of Hermitian (quasi-)Laplacian matrix of mixed graphs

Guihai Yu ${ }^{\text {a,* }}$, Xin Liu ${ }^{\text {b }}$, Hui Qu $^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Shandong Institute of Business and Technology, Yantai, Shandong 264005, China
${ }^{\mathrm{b}}$ Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China

A R T I CLE I N F O

Keywords:

Mixed graphs
Hermitian adjacency matrix
Hermitian (quasi-)Laplacian matrix

Abstract

A mixed graph is obtained from an undirected graph by orienting a subset of its edges. The Hermitian adjacency matrix of a mixed graph M of order n is an $n \times n$ matrix $H(M)=$ $\left(h_{k l}\right)$, where $h_{k l}=-h_{l k}=i(i=\sqrt{-1})$ if there exists an orientation from v_{k} to v_{l} and $h_{k l}=$ $h_{l k}=1$ if there exists an edge between v_{k} and v_{l} but not exist any orientation, and $h_{k l}=0$ otherwise. Let $D(M)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a diagonal matrix where d_{i} is the degree of vertex v_{i} in the underlying graph M_{u}. Hermitian matrices $L(M)=D(M)-H(M), Q(M)=$ $D(M)+H(M)$ are said as the Hermitian Laplacian matrix, Hermitian quasi-Laplacian matrix of mixed graph M, respectively. In this paper, it is shown that they are positive semidefinite. Moreover, we characterize the singularity of them. In addition, an expression of the determinant of the Hermitian (quasi-)Laplacian matrix is obtained.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and connected. Let G be an undirected graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The adjacency matrix $A(G)=\left(a_{i j}\right)_{n \times n}$ of G is defined as follows: $a_{i j}=1$ if v_{i} and v_{j} are adjacent and $a_{i j}=0$ otherwise. A mixed graph M is obtained from an undirected graph G by orienting a subset of its edges. We call G the underlying graph of M, denoted by M_{u}. The vertex set of M is denoted by $V(M)$, which is the same as $V(G)$. The edge set $E(M)$ is the union of the set of undirected edges $E_{0}(M)$ and the set of directed edges (arcs) $E_{1}(M)$. We distinguish undirected edge as $x \leftrightarrow y$ of vertices, while the directed edge ($\operatorname{arcs)}$ is $x \rightarrow y$ if the orientation is from x to y. If not considering the direction, we write $x y$ to be an edge of M.

The Hermitian adjacency matrix of a mixed graph M of order n is an $n \times n$ matrix $H(M)=\left(h_{k l}\right)$, where $h_{k l}=-h_{l k}=i$ ($i=\sqrt{-1}$) if there exists an orientation from v_{k} to v_{l} and $h_{k l}=h_{l k}=1$ if there exists an edge between v_{k} and v_{l} but not exist any orientation, and $h_{k l}=0$ otherwise. That is

$$
h_{k l}=\left\{\begin{array}{cl}
1 & \text { if } v_{k} \leftrightarrow v_{l} \\
i & \text { if } v_{k} \rightarrow v_{l} \\
-i & \text { if } v_{k} \leftarrow v_{l} \\
0 & \text { otherwise }
\end{array}\right.
$$

Obviously this matrix is Hermitian and all eigenvalues are real. It was introduced by Liu and Li [25] and independently by Guo and Mohar [20].

[^0]Two present authors gave the definition of Hermitian Laplacian matrix of mixed graph [29]. The Hermitian Laplacian matrix $L(M)$ of a mixed graph M is defined as $D(M)-H(M)$ where $D(M)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a diagonal matrix where d_{i} is the degree of vertex v_{i} in the underlying graph M_{u} [29]. In [29], it was shown that Hermitian Laplacian matrix is positive semi-definite. Moreover, some properties for its spectrum were investigated. As shown in [13], signless Laplacian matrix of undirected graph seems to be the most convenient for use in studying graph properties and attracted some attentions of researchers. Together with [10-12], there are about 100 papers on the signless Laplacian matrix of undirected graph published since 2005. Motivated from this, we introduce the Hermitian quasi-Laplaician matrix $Q(M)=D(M)+H(M)$ of mixed graph M. It is evident that $Q(M)$ is Hermitian and all eigenvalues are real.

An $i_{1}-i_{k}$-walk W in a mixed M is a sequence $W: v_{i_{1}} v_{i_{2}} \ldots v_{i_{k}}$ of vertices such that for $1 \leq s \leq k-1$ we have $v_{i_{s}} \leftrightarrow v_{v_{s+1}}$ or $v_{i_{s}} \rightarrow v_{v_{s+1}}$ or $v_{i_{s}} \leftarrow v_{v_{s+1}}$. An $i_{1}-i_{k}$-walk W is called even (odd) if k is even (odd). The value of a mixed walk $W=v_{1} v_{2} v_{3} \ldots v_{l}$ is $h(W)=h_{12} h_{23} \ldots h_{(l-1) l}$. A mixed walk is positive or negative if $h(W)=1$ or $h(W)=-1$, respectively. A mixed is said imaginary if $h(W)= \pm i$. Note that for one direction the value of a mixed walk or a mixed cycle is α, then for the reversed direction its value is $\bar{\alpha}$. Thus, if the value of a mixed cycle is 1 (resp. -1) in a direction, then its value is 1 (resp. -1) for the reversed direction. In these situations, we just termed this mixed cycle as a positive (negative) mixed cycle without mentioning any direction. A graph is positive (resp. negative) if each its mixed cycle is positive (resp. negative). An induced subgraph of M is an induced subgraph of its underlying graph G with the same orientations. For a subgraph H of M, let $M-H$ be the subgraph obtained from M by deleting all vertices of H and all incident edges. For $V_{1} \subseteq V(M), M-V_{1}$ is the subgraph obtained from M by deleting all vertices in V_{1} and all their incident edges.

Up to now, there exist considerably fewer results on the Hermitian spectra of mixed graph (see [7,20,25,26,29]). We organize this paper as follows. In Section 2, we characterize the singularity of Hermitian Laplacian matrix of mixed graphs. In addition, we derive an expression of determinant of Hermitian Laplacian matrix. In Section 3, we characterize the singularity of Hermitian quasi-Laplacian of mixed graphs. Moreover, an expression of determinant of Hermitian quasi-Laplacian are present.

2. Hermitian Laplacian matrix of mixed graphs

Let $S(M)=\left(s_{k e}\right)$ be an $n \times m$ matrix indexed by the vertex and the edge of mixed graph M, where $s_{k e}$ is a complex number and $\left|s_{k e}\right|=1$ or 0 . Moreover,

$$
s_{k e}= \begin{cases}-s_{l e}, & \text { if } v_{k} \leftrightarrow v_{l} \\ -i \cdot s_{l e}, & \text { if } v_{k} \rightarrow v_{l} \\ i \cdot s_{l e}, & \text { if } v_{k} \leftarrow v_{l} \\ 0, & \text { otherwise }\end{cases}
$$

It is evident that $S(M)$ is not unique. A matrix $S(M)$ is said an incidence matrix of M.
Theorem 1. [29] Let M be a mixed graph. Then $L(M)=S(M) S^{*}(M)$ and $L(M)$ is a positive semi-definite matrix.
Theorem 2. Let M be a connected mixed graph on vertices $v_{1}, v_{2}, \ldots, v_{n}$. Then $L(M)$ is singular if and only if any 1 - i-walk has the same value. In this case, 0 is a simple eigenvalue with an eigenvector $\alpha=\left(1, \overline{h\left(W_{2}\right)}, \overline{h\left(W_{3}\right)}, \ldots, \overline{h\left(W_{n}\right)}\right)^{T}$, where W_{i} is a 1 - i-walk in M.

Proof. Let $x^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Note that for an non-zero vector x, we have $L(M) x=0$ if and only if $S^{*}(M) x=0$. By $\left(S^{*}(M) x\right)_{e}=\overline{s_{k e}} x_{k}+\overline{s_{l e}} x_{l}$, we have $S^{*}(M) x=0$ if and only if $x_{k}=h_{k l} x_{l}$ for any edge $e=v_{k} v_{l}$. Let $W=u_{1} u_{2} \ldots u_{i}$ be any $1-i$-walk and $u_{1}=v_{1}, u_{i}=v_{i}$. So we have

$$
x_{1}=h_{12} x_{2}=h_{12} h_{23} x_{3}=\cdots=h_{12} h_{23} \ldots h_{i-1, i} x_{i}=h(W) x_{i}
$$

this implies that each $1-i$-walk has the same value. So we have

$$
\begin{aligned}
x^{T} & =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\left(x_{1}, \overline{h\left(W_{2}\right)} x_{1}, \overline{h\left(W_{3}\right)} x_{1}, \ldots, \overline{h\left(W_{n}\right)} x_{1}\right) \\
& =x_{1} \alpha^{T} .
\end{aligned}
$$

This implies that 0 is a simple eigenvalue of $L(M)$ with an eigenvector α.
Conversely, let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T}$ be a vector. Note that $a_{k}=h_{k l} a_{l}$ for each edge $e=v_{k} v_{l}$. So, we have

$$
\begin{aligned}
\alpha^{*} L(M) \alpha & =\sum_{e \in E(M)}\left|a_{k}-h_{k l} a_{l}\right|^{2} \\
& =\sum_{e \in E(M)}\left|h_{k l} a_{l}-h_{k l} a_{l}\right|^{2}=0 .
\end{aligned}
$$

This implies that $L(M)$ is singular.

https://daneshyari.com/en/article/4625573

Download Persian Version:
https://daneshyari.com/article/4625573

Daneshyari.com

[^0]: * Corresponding author. Fax: +86 5356903824.

 E-mail addresses: yuguihai@126.com (G. Yu), xiliu@must.edu.mo (X. Liu), quhui05@126.com (H. Qu).

