
Applied Mathematics and Computation 292 (2017) 1–8 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Time decay rate of weak solutions to the generalized MHD 

equations in R 

2 � 

Caidi Zhao 

∗, Bei Li 

Department of Mathematics and Information Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China 

a r t i c l e i n f o 

MSC: 

76A10 

76D03 

35Q35 

Keywords: 

Generalized MHD equations 

Fractional dissipation 

Time decay rate 

a b s t r a c t 

This paper studies the time decay rate of weak solutions to the following two-dimensional 

magnetohydrodynamics (MHD) equations with fractional dissipations 

∂ t u + (u · ∇) u − (b · ∇) b + ∇p = −(−� ) αu, 

∂ t b + (u · ∇) b − (b · ∇) u = −(−� ) βb. 

The motivation is to understand how the parameters α and β affect the decay rate of 

its solutions. The authors use the Fourier splitting method of Schonbek to prove that the 

solutions have the following decay rate 

‖ u (x, t) ‖ 2 + ‖ b(x, t) ‖ 2 � c(1 + t) 1 − 2 /γ , for large enough t, 

where α, β ∈ [1, 2) and γ = max { α, β} . 
© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper, we study the following equations 

∂ t u + (u · ∇) u − (b · ∇) b + ∇p = −(−� ) αu, (1.1) 

∂ t b + (u · ∇) b − (b · ∇) u = −(−� ) βb, (1.2) 

∇ · u = ∇ · b = 0 , (1.3) 

u (x, 0) = u 0 , b(x, 0) = b 0 , (1.4) 

where the velocity field u = u (x, t) ∈ R 

2 , the magnetic field b = b(x, t) ∈ R 

2 and the total pressure p(x, t) ∈ R are functions 

of x ∈ R 

2 and t ≥ 0. Here α and β are the parameters of the fractional dissipations corresponding to the velocity filed and 

magnetic field, respectively. A fractional power of the Laplace transform (−�) λ is defined through the Fourier transform 

̂ (−�) λ f (ξ ) � | ξ | 2 λ ˆ f (ξ ) . 
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Eqs. (1.1) and (1.2) describe the large eddy simulation model for the turbulent flow of a magnetofluid (see [5] ). They are 

of interest for various reasons. For example, they include some known equations, say standard MHD equations ( α = β = 1 ) 

and Navier–Stokes (NS) equations ( α = β = 1 , b = 0 ). It is therefore reasonable to call Eqs. (1.1) and (1.2) generalized MHD 

equations. Moreover, they have similar scaling properties and energy estimate as the NS equations and MHD equations. 

There are some papers studying the MHD equations or its related versions. First, the solvability of the MHD equa- 

tions was investigated in the beginning of 1960s [19] . For example, Wu studied systematically the well-posedness of 

the two-dimensional (2D) and 3D generalized MHD equations in [21] . Fan et al. investigated the global Cauchy problem 

of 2D generalized MHD equations in [9] . Zhou and his group studied the regularity criteria for the MHD equations in 

[10,11,13,29,30,33,34] . The existence and dimension estimation of the global attractor for the MHD equations were veri- 

fied in [4,5,22] . In addition, the Hall-MHD equations were studied by Wan and Zhou [20] . However, as far as we know, there 

is no reference investigating the time decay rate of solutions to the generalized MHD equations. 

The aim of this paper is to prove an upper bound of the time decay rate of weak solutions to the generalized MHD Eqs. 

(1.1) –(1.4) in R 

2 . The motivation is to understand how the parameters α and β affect the decay rate of its solutions. Our 

main approaches are Fourier splitting method of Schonbek (see [14] ) and the Gronwall inequality. Within this paper, we 

take α, β ∈ [1, 2) and prove that the solutions have the following decay rate 

‖ u (x, t) ‖ 

2 + ‖ b(x, t) ‖ 

2 � c(1 + t) 1 − 2 /γ , for large enough t, (1.5) 

hereinafter γ = max { α, β} . Here we want to point out that Wu proved in [21] : For given u 0 , b 0 ∈ L 

2 (R 

2 ) with ∇ · u 0 = 

∇ · b 0 = 0 , if α, β ≥ 1, then Eqs. (1.1) –(1.4) possess a global weak solution. We note that if α, β ≥ 2, then the decay rate 

(1.5) is trivial. This is the reason we take α, β ∈ [1, 2) within this paper. 

The Fourier splitting method was built up by Schonbek in [14–17] , where the upper and lower bounds of decay rate for 

the Leray-Hopf solutions of the NS equations were subtly proved. Later, the Fourier splitting method has been well extended 

to investigate the decay rate for the solutions of partial differential equations from mathematical physics. For example, one 

can see Bjorland and Schonbek [2] , Brandolese and Schonbek [3] , Dai, Qing and Schonbek [6] , Dong and Chen [7] , Dong and 

Li [8] , Niche and Schonbek [12] , Schonbek and Wiegner [18] , Zhang [23–26] , Zhao et al. [27,28] , Zhou [31,32] , etc. 

Different to the NS equations studied in [14] , Eqs. (1.1) and (1.2) contain the Maxwell’s equations (which rules the mag- 

netic field) and the NS equations (which governs the fluid motion), what is more, Eqs. (1.1) and (1.2) contain the fractional 

dissipative terms −(−� ) αu and −(−� ) βb, respectively. Dissipation corresponding to a fractional power of Laplacian in prin- 

ciple arises from modeling real physical phenomena, but our motivation for studying Eqs. (1.1) –(1.4) is mainly mathematical 

and the goal is to understand how the parameters α and β affect the decay rate of its solutions. 

2. Preliminaries 

Throughout this paper, we use c to denote the generic constant that can take different values in different places. L 

p (R 

2 ) = 

L p (R 

2 ) × L p (R 

2 ) represents the 2D vector Lebesgue space with norm ‖ · ‖ p , particularly, ‖ · ‖ 2 = ‖ · ‖ . W 

m,p (R 

2 ) stands for 

the 2D vector Sobolev space { φ = (φ1 , φ2 ) ∈ L 

p (R 

2 ) 
∣∣D 

ηφ ∈ L 

p (R 

2 ) , | η| � m } , with norm (see [1] ) 

‖ φ‖ m,p � 

( 

2 ∑ 

k =1 

| φk | p m,p 

) 1 /p 

, where | φk | m,p � 

( ∫ 
R 2 

( ∑ 

| η| � m 

| D 

ηφk | p 
) 

d x 

) 1 /p 

. 

Especially, we denote H 

m (R 

2 ) = W 

m, 2 (R 

2 ) and by H 

m 

0 
(R 

2 ) the closure of { ϕ ∈ (C ∞ 

0 
(R 

2 )) 2 } with respect to H 

m (R 

2 ) norm. 

Note that H 

m (R 

2 ) = H 

m 

0 
(R 

2 ) . In addition, the space H 

s (R 

2 ) , s ∈ R , consists of functions f satisfying 

‖ f‖ 

2 
H s 

� 

∫ 
R 2 

(1 + | ξ | 2 ) s | ̂  f (ξ ) | 2 d ξ < ∞ . 

We next specify the definition of weak solutions to Eqs. (1.1) –(1.4) . Let T > 0 be arbitrarily fixed. As usual, we write 

(−�) 1 / 2 as �. 

Definition 2.1. A measurable vector pair ( u , b ) is called a weak solution to the generalized MHD Eqs. (1.1) –(1.4) , if ( u , b ) 

satisfies 

u ∈ L ∞ ([0 , T ) ; L 

2 (R 

2 )) ∩ L 2 ([0 , T ) ; H 

α(R 

2 )) , b ∈ L ∞ ([0 , T ) ; L 

2 (R 

2 )) ∩ L 2 ([0 , T ) ; H 

β (R 

2 )) , 

and ∫ T 

0 

∫ 
R 2 

[ 
u · (�2 α − u · ∇) ψ + b · ∇ψ · b − p(∇ · ψ ) 

] 
d x d t = 

∫ 
R 2 

ψ (u 0 − u (t))d x, 

∫ T 

0 

∫ 
R 2 

[ 
b · (�2 β − u · ∇) ψ + b · ∇ψ · u 

] 
d x d t = 

∫ 
R 2 

ψ(b 0 − b(t))d x, 
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