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a b s t r a c t 

A feasibility study of optimal control techniques for cardiac defibrillation on anatomical 

three spatial dimensional rabbit ventricle geometry in the presence of bilateral control 

constraints is presented. The work addresses the numerical treatment of multi-scale and 

multi-domain simulations of the bidomain equations and is based on the primal-dual ac- 

tive set method to solve the optimality system for this large scale optimization problem. 

Numerical results are presented for a successful defibrillation study. Robustness of the op- 

timization algorithm w.r.t to variations in the model parameters is demonstrated. A fea- 

sibility study for multiple small boundary control support is included as well. Finally, the 

numerical convergence of the optimization algorithm and the parallel efficiency is demon- 

strated. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper we present computational techniques to solve large scale optimal control problems modeling the termina- 

tion of cardiac arrhythmia in electrophysiology. Cardiac defibrillation is a standard procedure to restore the regular heart 

rhythm. Electric shocks are delivered through specified electrodes. Computational tools have been progressively developed 

to study cardiac defibrillation and some of them are available for anatomical realistic geometries [2,13,19,34,35] . 

Here we briefly mention a widely accepted bidomain model [31,36] which describes excitation propagation and external 

stimulation of heart tissue. The cardiac tissue domain is denoted by �H , surrounded by a bath domain �B . We also set 

the complete domain � = �H ∪ �B . The space-time cylinder of the whole domain is denoted by Q = � × (0 , T ] and the 

cardiac tissue and bath volume are denoted by Q B = �B × (0 , T ] and Q H = �H × (0 , T ] respectively. Designing a proper cost 

functional for the optimization for such complex phenomena is not trivial. In our computational modeling, a natural optimal 

control approach to cardiac defibrillation is to determine the control variable in such a way that the undesired values of the 

transmembrane voltage v are minimized based on the given desired trajectory. Abstractly the optimal control approach to 

cardiac defibrillation is given as follows: 

(P) 

{
min J(v , I e ) , 
e (u b , u e , v , w, I e ) = 0 in Q and I e ∈ [ −R, R ] , 

(1) 
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where u b , u e , v and w are the state variables and I e denotes the control variable representing the external current. Moreover, 

R is a given maximum threshold value for the control in order to avoid damage of the tissue. Here the control input acts on 

the boundary of the bath domain. 

The coupled system of partial differential equation constraints is expressed by e (u b , u e , v , w, I e ) = 0 which consists of the 

following equations 

0 = ∇ · ( ̄σi + σ̄e ) ∇u e + ∇ · σ̄i ∇v in Q H (2) 

∂v 
∂t 

= ∇ · σ̄i ∇v + ∇ · σ̄i ∇u e − I ion (v , w ) + I tr (x, t) in Q H (3) 

∂w 

∂t 
= G (v , w ) in Q H , (4) 

together with initial and boundary conditions including the control I e which are specified below. Here u e : Q H → R is the 

extracellular potential, v : Q H → R is the transmembrane voltage, w : Q H → R 

n represents the cell model state variables, 

σ̄i : �H → R 

d×d and σ̄e : �H → R 

d×d are respectively the intracellular and extracellular conductivity tensors. The term I tr is 

the transmembrane current density stimulus as delivered by the intracellular electrode which is active during the S1-S2 

stimulation protocol. Moreover I ion (v , w ) is the current density flowing through the ionic channels and the function G (v , w ) 

determines the evolution of the gating variables, which are determined by an electrophysiological cell model, see [1] for 

more description on these models. We remark that the ODE holds on each mesh point of the computational geometry. 

In general, compared to (2) –(4) , an additional Poisson problem has to be solved when the heart is immersed in a con- 

ductive fluid, e.g. a tissue bath in an experimental context or a surrounding torso, to model in vivo scenarios. 

0 = ∇ · σ̄b ∇u b in Q B , (5) 

where u b : Q B → R is the bath potential, and σ̄b : �B → R 

d×d is the bath conductivity tensors. 

As a consequence of the myocardium geometry the intra and extra cellular conductivity tensors of the tissue are 

anisotropic. Let a l ( x ), a t ( x ) and a n ( x ) denote the fiber, sheet and normal to the sheet directions respectively in the orthonor- 

mal basis [19] which depends on the position in the heart. In our computational study, we assumed rotational isotropy at 

the tissue structure, i.e. σ i,e 
n = σ i,e 

t . Then the local intracellular conductivity tensor σ̄i is expressed as 

σ̄i = (σ l 
i − σ i 

t ) a l (x ) a T l (x ) + σ i 
t I. (6) 

Here σ i 
l 
, σ i 

t denote the measured conductivity coefficients along the corresponding directions and I is the identity matrix. 

The fiber directions of the cardiac tissue have been modeled based on anatomical observations, see Fig. 2 for the distribu- 

tions of the fiber orientation in our computations. A rule-based method was used to impose fiber orientations within the 

cardiac tissue geometry [5] using fiber angles of −60 ◦ and +60 ° at the endocardial and epicardial surfaces, respectively, and 

a smooth linear variation of fiber angles as a function of depth in between. 

It is assumed that there is no current flow between the intracellular and extra-myocardial (bath) domains. Hence homo- 

geneous Neumann boundary conditions are applied to the boundaries on the intracellular space: 

η · ( ̄σi ∇v + σ̄i ∇u e ) = 0 on �H = ∂�H × [0 , T ] . (7) 

The boundary conditions for the extracellular potential on the extracellular domain were set up as a current balance be- 

tween the extracellular domain and the surrounding bath domain [36] . This means, at the boundary of the tissue-bath 

interface the continuity of the normal component of the extracellular currents u b and u e is enforced: 

η · σ̄e ∇ u e = η · σ̄b ∇ u b on �H . (8) 

Here η is the outward normal vector on ∂�H . Moreover, the extracellular potentials must also match the values at the 

common boundary: 

u e = u b on �H . (9) 

We assume that no current flows out of the bath domain and therefore we use homogeneous Neumann boundary con- 

ditions except for those parts of the boundary where external stimuli are applied. 

η · σ̄b ∇u b = 

ˆ I e (t) on �12 × (0 , T ] (10) 

η · σ̄b ∇u b = 0 on ∂�B \ �12 × (0 , T ] . (11) 

The current ˆ I e acts as control along the boundary �12 = �1 ∪ �2 , where �i , i = 1 , 2 , 3 are mutually disjoint and satisfy 

�1 ∪ �2 ∪ �3 = ∂�B , see Fig. 1 for a pictorial representation. For compatibility reasons associated to Eq. (5) it is assumed 

throughout that ∫ 
∂�B 

ˆ I e (t, ·) d s = 0 ∀ t ∈ (0 , T ) . (12) 
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