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a b s t r a c t 

The nonlinear incidence rate can explain the complicated infectious process of disease. And 

time delay describing the latent period widely exists in the process of disease contagion. 

In this paper, a spatiotemporal epidemic model with nonlinear incidence rate is investi- 

gated. In particular, we considered that the time delay is relatively small. In this case, the 

characteristic equation are derived, we obtain two mechanisms of instability of the posi- 

tive constant stationary state, that is, One is the diffusion induced instability, and the other 

one is delay induced instability. Moreover, the results of numerical simulation validate our 

theoretical analyses. The obtained results may well catch some major features for epidemic 

models. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

At present, more and more diseases spread to many areas from source areas. For example, at the end of 3 2009, H1N1 

avian influenza began to emerge in Mexico and the United States, and then spread to all over the world. The prevention 

and control of the disease is an urgent issue to be solved [1–5] . On the basis of Kermack–McKendrick compartment model, 

previous researchers have established some epidemic models to study a variety of realistic diseases, such as ordinary dif- 

ferential equation model, partial differential equation model, stochastic differential equation model and so on [6–10] . These 

observed epidemiological phenomena are explained by modeling suitable models. Su and Ruan have found that malaria fever 

depended on the parasite replication cycles based on a reaction–diffusion system [11] . Jewell and Keeling et al. have studied 

the spatiotemporal epidemic model of foot-and-mouth disease of 2007 in the UK, and proposed undetected infections. 

All living beings reside in spatial environments, they are not only in one place, and randomly go to the surrounding area. 

The diffusion of individual in space has an effect on the spread of the disease. For example, populations mobility caused 

outbreak of the chikungunya epidemic in 20 05–20 06 on the Reunion Island [12] . In order to study the trends of disease 

spreading in space, the mechanisms of pattern formation in epidemic models can reflect the evolution and distribution 

of the infected in space by the reaction–diffusion model [13–20] . Noble used the reaction–diffusion model to understand 

spreading processes of Black Death in Europe [21] . Thus, epidemic model with respect to space is able to describe the 

contagion phenomena of disease. 

However, an individual infected some disease will not immediately come down with the symptoms, but after a period of 

time, the individual shows the corresponding symptoms, such as rabies, avian influenza, Ebola and so on [22–25] . In fact, it 

is possible to promote the outbreak of the disease for these potentially asymptomatic individuals who do not usually go to 

the hospital or limit their behaviors. The variable periods of latency on the transmission dynamics of tuberculosis affected 
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the number of infected individuals [26] . In addition, a few scholars studied the formation of patterns of reaction–diffusion 

epidemic model with considering the latent period [9,19] . Therefore, it is meaningful to consider the influences of time delay 

and spatial factor on diseases. 

Pattern dynamics has been received more and more attention in various research fields [27,28] and rich dynamics are 

obtained including phase transitions [29–31] and cyclic dominance [32] . For spatial epidemic models, one can find the 

regions of diseases outbreak or extinction and take effective control strategies to eliminate the diseases based on patterns 

structures. What is more, our results on pattern dynamics of epidemic systems in this paper can be applied in other systems, 

such as social systems [33] , ecosystems [34] and so on [35] . 

Spatial patterns in epidemic systems were investigated by some scholars [9,10,14,16] and they obtained rich patterns 

formation, such as stripe-like or spotted or coexistence of both patterns. However, little work was done on the pattern 

dynamics of epidemic models with diffusion and time delay. For such reason, we present a spatial epidemic model with 

spatial motion and delay in this paper. 

The structure of this paper is as below. In Section 2 , the local stabilities of equilibria of the non-spatial SI epidemic model 

are given. In Section 3 , in case of small delay, the characteristic equation of spatial SI epidemic model with delay is derived. 

Moreover, the delay and diffusion can both induce the instability of the positive constant stationary state. In Section 4 , we 

obtain the patterns by performing a series of numerical simulations. Finally, we give some conclusions and discussion. 

2. Mathematical modeling and analysis 

2.1. Model formulation 

The appropriate epidemic model can reflect the situation of the spread of disease. In this paper, the total population is 

divided into the susceptible (S) and the infectious (I). We assume that only the susceptible can produce offsprings, and the 

susceptible growth is affected by environmental constraints. Thus, we consider the logistic model. Since the infection process 

between the susceptible and the infected is more complex, Liu et al. considered nonlinear incidence rate βS p I q with p and 

q near 1 and this form of nonlinear incidence rate without a period forcing can induce rich dynamical behaviors [36,37] . 

The population is always in a certain spatial position, and assuming that the individual randomly diffuse to the surrounding 

space. In order to describe the diffusion process, the usual Laplacian operator ∇ 

2 = 

∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 
in two-dimensional space is 

given. d 1 and d 2 denote the diffusion coefficients for different species. Furthermore, we are interested in the self-organization 

of patterns, and choose the nonzero initial condition and Neumann boundary conditions. Then the following SI epidemic 

model is given by: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂S(x, y, t) 

∂t 
= rS(x, y, t) 

(
1 − S(x, y, t) 

K 

)
− β(S(x, y, t)) p (I(x, y, t)) q + d 1 ∇ 

2 S(x, y, t) , 

∂ I(x, y, t) 

∂t 
= β(S(x, y, t)) p (I(x, y, t)) q − dI(x, y, t) + d 2 ∇ 

2 I(x, y, t) , t > 0 , (x, y ) ∈ �, 

∂S 

∂n 

∣∣∣
∂�

= 

∂ I 

∂n 

∣∣∣
∂�

= 0 , t ≥ 0 , 

S(x, y, 0) ≥ 0 , I(x, y, 0) ≥ 0 , (x, y ) ∈ �, 

(1) 

where r and K are the intrinsic growth rate and the carrying capacity of logistic equation, respectively. The contact trans- 

mission rate is β , d denotes the natural mortality. p and q are phenomenological, and p + q = 1 with p , q > 0 [9] . 

Most diseases have incubation [38,39] . For example, human infected H7N9 avian influenza generally takes 7 days to ex- 

hibit corresponding symptoms [40] . Therefore, it is meaningful for us to introduce time delay into the infected. Consequently, 

one can give the following system: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂S(x, y, t) 

∂t 
= rS(x, y, t) 

(
1 − S(x, y, t) 

K 

)
− β(S(x, y, t)) p (I(x, y, t − τ )) q + d 1 ∇ 

2 S(x, y, t) , 

∂ I(x, y, t) 

∂t 
= β(S(x, y, t)) p (I(x, y, t − τ )) q − dI(x, y, t) + d 2 ∇ 

2 I(x, y, t) , t > 0 , (x, y ) ∈ �, 

∂S 

∂n 

∣∣∣
∂�

= 

∂ I 

∂n 

∣∣∣
∂�

= 0 , t ≥ 0 , 

S(x, y, t) = φ(x, y, t) ≥ 0 , I(x, y, t) = ϕ(x, y, t) ≥ 0 , (x, y, t) ∈ �̄ × [ −τ, 0] . 

(2) 

2.2. Local stability 

Next, the following non-spatial system is discussed: 

dS 

dt 
= rS 

(
1 − S 

K 

)
− βS p I q � f (S, I) , 

dI 

dt 
= βS p I q − dI � g(S, I) . (3) 
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