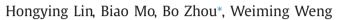
Contents lists available at ScienceDirect

### Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

# Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs



School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China

#### ARTICLE INFO

Keywords: Tensor Eigenvalues of tensors Uniform hypergraph Average 2-degree Adjacency tensor Signless Laplacian tensor

#### ABSTRACT

We give sharp upper bounds for the ordinary spectral radius and signless Laplacian spectral radius of a uniform hypergraph in terms of the average 2-degrees or degrees of vertices, respectively, and we also give a lower bound for the ordinary spectral radius. We also compare these bounds with known ones.

© 2016 Elsevier Inc. All rights reserved.

#### 1. Introduction

For positive integers k and n with  $k \le n$ , a tensor  $\mathcal{T} = (T_{i_1 \dots i_k})$  of order k and dimension n refers to a multidimensional array with complex entries  $T_{i_1 \dots i_k}$  for  $i_j \in [n] := \{1, \dots, n\}$  and  $j \in [k]$ . Obviously, a vector is a tensor of order 1 and a matrix is a tensor of order 2.

Let  $\mathcal{M}$  be a tensor of order  $s \ge 2$  and dimension n, and  $\mathcal{N}$  a tensor of order  $k \ge 1$  and dimension n. The product  $\mathcal{MN}$  is the tensor of order (s - 1)(k - 1) + 1 and dimension n with entries [10]

$$(\mathcal{MN})_{ij_1\cdots j_{s-1}} = \sum_{i_2,\ldots,i_s\in[n]} M_{ii_2\cdots i_s} N_{i_2j_1}\cdots N_{i_sj_{s-1}},$$

with  $i \in [n]$  and  $j_1, ..., j_{s-1} \in [n]^{k-1}$ .

For a tensor  $\mathcal{T}$  of order  $k \ge 2$  and dimension n and a vector  $x = (x_1, ..., x_n)^{\top}$ ,  $\mathcal{T}x$  is an n-dimensional vector whose *i*th entry is

$$(\mathcal{T}x)_i = \sum_{i_2,\ldots,i_k \in [n]} T_{ii_2\cdots i_k} x_{i_2} \cdots x_{i_k},$$

where  $i \in [n]$ . Let  $x^{[r]} = (x_1^r, ..., x_n^r)^\top$ . For some complex  $\rho$ , if there is a nonzero *n*-dimensional vector *x* such that

$$\mathcal{T} \mathbf{X} = \rho \mathbf{X}^{[k-1]},$$

then  $\rho$  is called an eigenvalue of  $\mathcal{T}$ , and x an eigenvector of  $\mathcal{T}$  corresponding to  $\rho$ , see [7,8]. Let  $\rho(\mathcal{T})$  be the largest modulus of the eigenvalues of  $\mathcal{T}$ .

Let  $\mathcal{G}$  be a hypergraph with vertex set  $V(\mathcal{G}) = [n]$  and edge set  $E(\mathcal{G})$ , see [1]. If every edge of  $\mathcal{G}$  has cardinality k, then we say that  $\mathcal{G}$  is a k-uniform hypergraph. Throughout this paper, we consider k-uniform hypergraphs on n vertices with  $2 \le k \le n$ . A uniform hypergraph is a hypergraph that is k-uniform for some k. For  $i \in [n]$ ,  $E_i$  denotes the set of edges of  $\mathcal{G}$  containing

\* Corresponding author. Tel.: +86 20852166558408.

http://dx.doi.org/10.1016/j.amc.2016.03.016 0096-3003/© 2016 Elsevier Inc. All rights reserved.





霐

E-mail addresses: lhongying0908@126.com (H. Lin), 172895568@qq.com (B. Mo), zhoubo@scnu.edu.cn (B. Zhou), jshwwm@163.com (W. Weng).

*i*. The degree of a vertex *i* in  $\mathcal{G}$  is defined as  $d_i = |E_i|$ . If  $d_i = d$  for  $i \in V(\mathcal{G})$ , then  $\mathcal{G}$  is called a regular hypergraph (of degree *d*). For *i*,  $j \in V(\mathcal{G})$ , if there is a sequence of edges  $e_1, \ldots, e_r$  such that  $i \in e_1$ ,  $j \in e_r$  and  $e_s \cap e_{s+1} \neq \emptyset$  for all  $s \in [r-1]$ , then we say that *i* and *j* are connected. A hypergraph is connected if every pair of different vertices of  $\mathcal{G}$  is connected.

The adjacency tensor of a *k*-uniform hypergraph  $\mathcal{G}$  on *n* vertices is defined as the tensor  $\mathcal{A}(\mathcal{G})$  of order *k* and dimension *n* whose  $(i_1 \cdots i_k)$ -entry is

$$A_{i_1\cdots i_k} = \begin{cases} \frac{1}{(k-1)!} & \text{if } \{i_1, \dots, i_k\} \in E(\mathcal{G}), \\ 0 & \text{otherwise.} \end{cases}$$

Let  $\mathcal{D}(\mathcal{G})$  be the diagonal tensor of order k and dimension n with its diagonal entry  $D_{i,..i}$  the degree of vertex i for  $i \in [n]$ . Then  $\mathcal{Q}(\mathcal{G}) = \mathcal{D}(\mathcal{G}) + \mathcal{A}(\mathcal{G})$  is the signless Laplacian tensor of  $\mathcal{G}$ . We call  $\rho(\mathcal{A}(\mathcal{G}))$  the (ordinary) spectral radius of  $\mathcal{G}$ , which is denoted by  $\rho(\mathcal{G})$ , and  $\rho(\mathcal{Q}(\mathcal{G}))$  the signless Laplacian spectral radius of  $\mathcal{G}$ , which is denoted by  $\mu(\mathcal{G})$ .

For a nonnegative tensor  $\mathcal{T}$  of order  $k \ge 2$  and dimension n, the *i*th row sum of  $\mathcal{T}$  is  $r_i(\mathcal{T}) = \sum_{i_2,...,i_k \in [n]} T_{ii_2\cdots i_k}$ . If  $r_i(\mathcal{T}) > 0$ , then the *i*th average 2-row sum of  $\mathcal{T}$  is defined as

$$m_i(\mathcal{T}) = \frac{\sum_{i_2,\dots,i_k \in [n]} T_{ii_2\cdots i_k} r_{i_2}(\mathcal{T}) \cdots r_{i_k}(\mathcal{T})}{r_i^{k-1}(\mathcal{T})}.$$

Let  $\mathcal{G}$  be a *k*-uniform hypergraph on *n* vertices. Let  $\mathcal{A} = \mathcal{A}(\mathcal{G})$ . For  $i \in V(\mathcal{G})$  with  $d_i > 0$ ,

$$m_{i}(\mathcal{A}) = \frac{\sum_{i_{2},\dots,i_{k} \in [n]} A_{ii_{2}\dots i_{k}} r_{i_{2}}(\mathcal{A}) \cdots r_{i_{k}}(\mathcal{A})}{r_{i}^{k-1}(\mathcal{A})}$$
$$= \frac{\sum_{\{i,i_{2},\dots,i_{k}\} \in E_{i}} d_{i_{2}} \cdots d_{i_{k}}}{d_{i}^{k-1}},$$

which is called the average 2-degree of vertex *i* of  $\mathcal{G}$  (average of degrees of vertices in  $E_i$ ) [12].

For a *k*-uniform hypergraph  $\mathcal{G}$  with maximum degree  $\Delta$ , we know that  $\rho(\mathcal{G}) \leq \Delta$  [2] and  $\mu(\mathcal{G}) \leq 2\Delta$  [8] with either equality when  $\mathcal{G}$  is connected if and only if  $\mathcal{G}$  is regular (see [9]). Recently, upper bounds for  $\rho(\mathcal{G})$  and  $\mu(\mathcal{G})$  are given in [12] using degree sequence. In this note, we present sharp upper bounds for  $\rho(\mathcal{G})$  and  $\mu(\mathcal{G})$  using average 2-degrees or degrees, and we also give a lower bound for  $\rho(\mathcal{G})$ . We compare these bounds with known bounds by examples.

#### 2. Preliminaries

A nonnegative tensor  $\mathcal{T}$  of order  $k \ge 2$  dimension n is called weakly irreducible if the associated directed graph  $D_{\mathcal{T}}$  of  $\mathcal{T}$  is strongly connected, where  $D_{\mathcal{T}}$  is the directed graph with vertex set  $\{1, \ldots, n\}$  and arc set  $\{(i, j) : a_{ii_2 \cdots i_k} \neq 0 \text{ for some } i_s = j \text{ with } s = 2, \ldots, k\}$  [3,8].

For an *n*-dimensional real vector *x*, let  $||x||_k = (\sum_{i=1}^n |x_i|^k)^{\frac{1}{k}}$ , and if  $||x||_k = 1$ , then we say that *x* is a unit vector. Let  $\mathbb{R}^n_+$  be the set of *n*-dimensional nonnegative vectors.

**Lemma 2.1** [3,11]. Let  $\tau$  be a nonnegative tensor. Then  $\rho(\tau)$  is an eigenvalue of  $\tau$  and there is a unit nonnegative eigenvector corresponding to  $\rho(\tau)$ . If furthermore  $\tau$  is weakly irreducible, then there is a unique unit positive eigenvector corresponding to  $\rho(\tau)$ .

**Lemma 2.2** [8]. Let  $\mathcal{G}$  be a k-uniform hypergraph with n vertices. Then  $\rho(\mathcal{G}) = \max\{x^{\top}(\mathcal{A}(\mathcal{G})x) : x \in \mathbb{R}^n_+, \|x\|_k = 1\}$ .

**Lemma 2.3** [6,8]. Let  $\mathcal{G}$  be a k-uniform hypergraph. Then  $\mathcal{A}(\mathcal{G})$  ( $\mathcal{Q}(\mathcal{G})$ , respectively) is weakly irreducible if and only if  $\mathcal{G}$  is connected.

A hypergraph  $\mathcal{H}$  is a subhypergraph of  $\mathcal{G}$  if  $V(\mathcal{H}) \subseteq V(\mathcal{G})$  and  $E(\mathcal{H}) \subseteq E(\mathcal{G})$ .

**Lemma 2.4** [2,4]. Let  $\mathcal{G}$  be a connected k-uniform hypergraph and  $\mathcal{H}$  be a subhypergraph of  $\mathcal{G}$ . Then  $\rho(\mathcal{H}) \leq \rho(\mathcal{G})$  with equality if and only if  $\mathcal{H} = \mathcal{G}$ .

For two tensors  $\mathcal{M}$  and  $\mathcal{N}$  of order  $k \ge 2$  and dimension n, if there is an  $n \times n$  nonsingular diagonal matrix U such that  $\mathcal{N} = U^{-(k-1)}\mathcal{M}U$ , then we say that  $\mathcal{M}$  and  $\mathcal{N}$  are diagonal similar.

**Lemma 2.5** [10]. Let  $\mathcal{M}$  and  $\mathcal{N}$  be two diagonal similar tensors of order  $k \geq 2$  and dimension n. Then  $\mathcal{M}$  and  $\mathcal{N}$  have the same real eigenvalues.

**Lemma 2.6** [5,11]. Let T be a nonnegative tensor of order  $k \ge 2$  and dimension n. Then

 $\min_{1\leq i\leq n}r_i(\mathcal{T})\leq \rho(\mathcal{T})\leq \max_{1\leq i\leq n}r_i(\mathcal{T}).$ 

Moreover, if  $\mathcal{T}$  is weakly irreducible, then either equality holds if and only if  $r_1(\mathcal{T}) = \cdots = r_n(\mathcal{T})$ .

Download English Version:

## https://daneshyari.com/en/article/4625791

Download Persian Version:

https://daneshyari.com/article/4625791

Daneshyari.com