
Modular vector processor architecture targeting at data-level parallelism

Seyed A. Rooholamin, Sotirios G. Ziavras ⇑
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA

a r t i c l e i n f o

Article history:
Available online 6 May 2015

Keywords:
Parallelism
Vector processor
Performance
Speedup
Benchmarking

a b s t r a c t

Taking advantage of DLP (Data-Level Parallelism) is indispensable in most data streaming and multime-
dia applications. Several architectures have been proposed to improve both the performance and energy
consumption for such applications. Superscalar and VLIW (Very Long Instruction Word) processors along
with SIMD (Single-Instruction Multiple-Data) and vector processor (VP) accelerators, are among the
available options for designers to accomplish their desired requirements. We present an innovative archi-
tecture for a VP which separates the path for performing data shuffle and memory-indexed accesses from
the data path for executing other vector instructions that access the memory. This separation speeds up
the most common memory access operations by avoiding extra delays and unnecessary stalls. In our
lane-based VP design, each vector lane uses its own private memory to avoid any stalls during memory
access instructions. The proposed VP, which is developed in VHDL and prototyped on an FPGA, serves as a
coprocessor for one or more scalar cores. Benchmarking shows that our VP can achieve very high perfor-
mance. For example, it achieves a larger than 1500-fold speedup in the color space converting benchmark
compared to running the code on a scalar core. The inclusion of distributed data shuffle engines across
vector lanes has a spectacular impact on the execution time, primarily for applications like FFT
(Fast-Fourier Transform) that require large amounts of data shuffling. Compared to running the bench-
mark on a VP without the shuffle engines, the speedup is 5.92 and 7.33 for the 64-point FFT without
and with compiler optimization, respectively. Compared to runs on the scalar core, the achieved speed-
ups for this benchmark are 52.07 and 110.45 without and with compiler optimization, respectively.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

High-performance computing processors often have a super-
scalar or VLIW architecture that focuses mostly on exploiting ILP
(Instruction-Level Parallelism). Roger et al. [1] show that ILP and
DLP can be merged in a single simultaneous vector multithreaded
architecture for higher performance. VIRAM’s [2] basic multi-lane
architecture can be used to build VPs that exploit DLP through
SIMD processing. Each lane contains similar pipelined execution
and load-store units. Each vector register is uniformly distributed
among the lanes. All the elements from a vector in a lane are pro-
cessed sequentially in its pipelined units while corresponding
elements from different lanes are processed simultaneously.
Using EEMBC benchmarks, it was demonstrated that a cache-less
VIRAM is much faster than a superscalar RISC or a cache-based
VLIW processor [3].

The SODA VP has a fully programmable architecture for software
defined radio [4]. Using SIMD parallelism and being optimized for

16-bit computations, it supports the W-CDMA and IEEE802.11a
protocols. Embedded systems using a soft core or hard core proces-
sor for the main execution unit also have the option to attach a
hardware accelerator to increase their performance for specialized
tasks. Sometimes these accelerators are realized using FPGA
(Field-Programmable Gate Array) resources to speed up applica-
tions with high computational cost. Designing a custom hardware
accelerator that will yield outstanding performance needs good
knowledge of HDL (Hardware Description Language) programming.
Another SIMD, FPGA-based processor uses a 16-way data path and
17 memory blocks as the vector memory in order to perform data
alignment and avoid bank conflicts [5]. VESPA [6] is a portable, scal-
able and flexible soft VP which uses the same instruction set as
VIRAM but the coprocessor architecture was hand-written in
Verilog with built-in parameterization. It can be scaled with regards
to the number of lanes and yields 6.3� improvement with 16 lanes
for EEMBC benchmarks compared to a one-lane VP. It is flexible as
the size of the vector length and its width, as well as the memory
crossbar, can vary according to the target application. The VIPERS
soft VP is a general-purpose accelerator that can achieve a 44�
speedup compared to the Nios II scalar processor [7]; it increase

http://dx.doi.org/10.1016/j.micpro.2015.04.007
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: Ziavras@njit.edu (S.G. Ziavras).

Microprocessors and Microsystems 39 (2015) 237–249

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.04.007&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.04.007
mailto:Ziavras@njit.edu
http://dx.doi.org/10.1016/j.micpro.2015.04.007
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


the area requirements 26-fold. It supports specific instructions for
the applications, such as motion estimation and median filters,
and can be parameterized in terms of number of lanes, maximum
vector length and processor data width. VEGAS [8] is a soft VP with
cache-less scratchpad memory instead of a vector register file. It
achieves 1.7–3.1� improvements in the area-delay product com-
pared to VESPA and VIPERS. With the integration of a streaming
pipeline in the data path of a soft VP, a 7000� times speedup results
for the N-body problem [9].

An application-specific floating-point accelerator is built using a
fully automated tool chain, co-synthesis and co-optimization for
SIMD extension with a parameterizable number of vector elements
[10]. An application-specific VP for performing sparse matrix
multiplication was presented in [11]. IBM’s PowerEN processor
integrates five hardware application specific accelerators in a
heterogeneous architecture to perform key functions such as com-
pression, encryption, authentication, intrusion detection and XML
processing for big workload network applications. Hardware accel-
eration facilitates energy-proportional performance scaling [12].
An innovative lane-based VP which can be shared among multiple
cores in a multicore processor was proposed in [13]; it improves
performance while maintaining low energy cost compared to a
system with exclusive per-core VPs. Three shared-vector working
policies were introduced for coarse-grain, fine-grain and exclusive
vector-lane sharing, respectively. Benchmarking showed that these
policies yield 1.2–2� speedups compared to a similar cost system
where each core contains its own dedicated VP.

A major challenge with these VPs is slow memory accesses.
Comprehensive explorations of MIMD, vector SIMD and vector
thread architectures in handling regular and irregular DLP effi-
ciently confirm that vector-based microarchitectures are more area
and energy efficient compared to their scalar counterparts even for
irregular DLP [14]. Lo et al. [15] introduced an improved SIMD
architecture targeted at video processing. It has a parallel memory
structure composed of various block sizes and word lengths as well
as a configurable SIMD architecture. This structure can perform
random register file accesses to realize complex operations, such
as shuffling, which is quite common in video coding kernel func-
tions. A crossbar is located between the ALU (Arithmetic Logic
Unit) and register file.

In a VIRAM-like architecture, a memory crossbar often connects
the lanes to the memory banks to facilitate index memory address-
ing and data shuffling. This crossbar adds extra delay when not actu-
ally needed, such as for stride loads and stores. Moreover, it
increases the energy consumption. Adding a cache to each lane
may solve this problem to some extent but the cache coherence
problem will require an expensive solution, often prohibitive for
embedded systems. Since in practical applications stride addressing
is more common than other types of addressing [16], we introduce
here a VP model that does not sacrifice performance for less likely
memory access instructions. We develop a VIRAM-based,
floating-point VP embedded in an FPGA that connects to a scalar pro-
cessor. This VP comprises four vector lanes, and provides two sepa-
rate data paths for each lane to process and execute load and store
operations in the LDST (Load–Store) unit in parallel with
floating-point operations in the ALU. Each cache-less lane is directly
attached to its own local memory. Data shuffle instructions are sup-
ported by a shuffle engine in each lane which is placed after the
lane’s local memory and connects to other lanes via a combinational
crossbar. All the local memories connect to the shared bus which is
used to exchange data between these memories and the global
memory. The prototyping of a system with four lanes shows sub-
stantial increases in performance for a set of benchmarks compared
to similar systems that do not contain the shuffle engines.

Previously proposed VPs are not versatile enough in multithread-
ing environments. They were mostly capable of handling

simultaneously multiple threads using the same vector length in
predefined contexts. However, this approach is not often
efficient for real applications since a VP is a rather high-cost,
high-performance accelerator that consumes considerable area
and energy in multicore processors. A more flexible VP that can be
shared dynamically by multiple cores results in better resource uti-
lization, higher performance and lower energy power dissipation.
Our proposed solution supports the simultaneous processing of
multiple threads having diverse vector lengths. In fact, the vector
lengths used by any given thread are allowed to change during exe-
cution. The following sections show the detailed architecture of our
VP, benchmarking results on an FPGA prototype, and performance
analysis.

2. Methodology and realized architecture

2.1. System architecture prototyping on FPGA

Fig. 1 depicts the basic architecture of the FPGA-prototyped VP
introduced in this paper. For the sake of simplicity we show a sin-
gle scalar core, Xilinx’s soft core MicroBlaze (MB) that fetches
instructions from its instruction memory (not shown in the figure)
and issues them to appropriate execution units. The MB is in
charge of executing all scalar and control instructions while vector
instructions are sent to the VP. The shuffle engine, which is dis-
tributed along the lanes, is activated only to realize vector data
shuffling with multiple vector lanes. Our design introduces two
innovative concepts. First, it removes the competition of lanes to
access memory banks, which is the case for earlier works, by
employing cache-less private memories for the lanes; the private
memories form a low-order interleaved space that resides between
the lanes and the global memory. Second, the vector length can
vary even between instructions in the same thread. In all previ-
ously introduced VPs, the vector length was defined for each work-
ing context, program or thread. It was usually a fixed number for
each thread and was set in advance by the scheduler. In contrast,
our model allows us to define the vector length for each individual
instruction. As a result, the vector length can vary widely, even for
instructions in the same loop. Although usage of a mask register
could potentially have the same effect, the performance can
degrade.

Data needed by applications running on the VP should be
preferably stored in the private memories of lanes. Since these pri-
vate memories connect to the AXI (Advanced eXtensible Interface)

Fig. 1. High-level architecture of the multi-lane VP prototyped on a Xilinx FPGA.
The vector memory is low-order interleaved. Each vector lane is attached to a
private memory.

238 S.A. Rooholamin, S.G. Ziavras / Microprocessors and Microsystems 39 (2015) 237–249



Download English Version:

https://daneshyari.com/en/article/462647

Download Persian Version:

https://daneshyari.com/article/462647

Daneshyari.com

https://daneshyari.com/en/article/462647
https://daneshyari.com/article/462647
https://daneshyari.com

