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a b s t r a c t

Android has a layered architecture that allows applications to leverage services provided
by the underlying Linux kernel. However, Android does not prevent applications from
directly triggering the kernel functionalities through system call invocations. As recently
shown in the literature, this feature can be abused by malicious applications and thus lead
to undesirable effects. The adoption of SEAndroid in the latest Android distributions may
mitigate the problem. Yet, the effectiveness of SEAndroid to counter these threats is still
to be ascertained. In this paper we present an empirical evaluation of the effectiveness
of SEAndroid in detecting malicious interplays targeted to the underlying Linux kernel.
This is done by extensively profiling the behavior of honest and malicious applications
both in standard Android and SEAndroid-enabled distributions. Our analysis indicates that
SEAndroid does not prevent direct, possibly malicious, interactions between applications
and the Linux kernel, thus showing how it can be circumvented by suitably-crafted system
calls. Therefore, we propose a runtime monitoring enforcement module (called Kernel Call
Controller) which is compatible both with Android and SEAndroid and is able to enforce
security policies on kernel call invocations.We experimentally assess both the efficacy and
the performance of KCC on actual devices.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Android consists of a Java stack built on top of a native Linux kernel. Services and functionalities are achieved through
the interplay of components residing at different layers of the operating system. The Android Security Framework (ASF)
consists of a number of cross-layer security solutions combining basic Linux security mechanisms (e.g. Discretionary Access
Control), the app isolation offered by the Java Virtual Machine execution environment and Android-specific mechanisms
(e.g. the Android permission system).

The security offered by the ASF has been recently challenged by the discovery of a number of vulnerabilities involving all
layers of the Android stack (see, e.g., [1–3]). The analysis of these interplay-related vulnerabilities indicates that

• the securitymechanisms of the Android stack (both Java native and Android-specific) are not completely integratedwith
those in the Linux kernel, thereby allowing insecure interplay among layers;

• malicious and unprivileged Android applications can directly interact with the underlying Linux kernel, thereby
by-passing the controls performed by the ASF.
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In [1] and [4] we reported a vulnerability in cross-layer interaction that allowed to mount a fork bomb attack on all An-
droid distributions up the release of a patch for 4.0.3 version, in [5] we have carried out an empirical evaluation aimed at
determining to which extent such a lack of control in the ASF may allow applications to maliciously trigger the Linux kernel
functionality by means of properly-forged invocations.

The introduction of the Security Enhancements for Android project (SEAndroid) [6] in the Android Open Source Project
(AOSP) since version 4.4.3 calls for a reconsideration of the results reported in [5]. In fact, according to the official documen-
tation, the SEAndroid project aims at enabling the use of SELinux in Android ‘‘in order to limit the damage that can be done by
flawed or malicious applications and in order to enforce separation guarantees between applications’’ [7] and it should therefore
mitigate the aforementioned problems. It must also be observed that SEAndroid suffers from a number of limitations. For in-
stance, the development of a ‘‘good policy’’ and the trustworthiness of theASF are ‘‘crucial to the effectiveness of SE Android’’ [7].

To illustrate, let us consider the Zygote vulnerability reported in [1]. Such a vulnerability allows a malicious application
to force the Linux kernel to fork an unbounded number of processes thereby making the device totally unresponsive. In this
case, the problem is due to the fact that the ASF is not able to discriminate between a legal interplay (carried out by trusted
Android services) and an insecure one (executed by applications), thereby permitting the direct invocation of a critical
kernel functionality (i.e. the fork operation) by any application. This is basically due to a lack of control on Linux system
calls involved in the launch of applications. Although SEAndroid is able to address the Zygote vulnerability (by limiting the
usage of socket devices by applications), it ‘‘cannot in general mitigate kernel vulnerabilities’’ [7].

This paper extends the methodology proposed in [5] in a number of ways:

1. An experimental setup for SEAndroid is discussed. The experimental setup is aimed at (i) systematically capturing
invocations to the Linux kernel from different layers in the Android stack, and (ii) replicating the invocations through
a properly-crafted application.

2. A new empirical assessment, involving both recent Android and SEAndroid builds, has been carried out and a comparison
between the detection capabilities of Android and SEAndroid is discussed.

3. An interplay that allows a malicious application to circumvent SEAndroid is shown. This witnesses the limited control
exercised by SEAndroid on the interactions between applications and the Linux kernel.

4. A policy enforcementmodule, calledKernel Call Controller (KCC for short), that provides both Android and SEAndroidwith
the possibility to recognize and limit the direct interaction between the Android stack and the Linux kernel is presented.

5. An empirically-inferred KCC policy for filtering kernel call invocations according to (i) the identity of the caller and
(ii) the number of repeated invocations, is discussed.

6. KCC performance and reliability is evaluated and discussed using the sample policy.

Structure of the paper. Section 2 provides a general introduction to the cross-layer architecture of Android. Section 3 dis-
cusses the peculiarities and limitations of the ASF whereas Section 4 introduces SEAndroid and discusses its security fea-
tures. Section 5 describes the implementation and setup of our assessment environment for both Android and SEAndroid.
Section 6 is devoted to describing the experimental setup and results. Section 7 discusses the effectiveness of the secu-
rity countermeasures provided by the ASF and SEAndroid against two malicious applications. Section 8 introduces the
Kernel Call Controller module, the language used for defining enforcement policies and its empirical assessment using a
empirically-inferred policy. Section 9 discusses some related work while Section 10 concludes the paper with some final
remarks and future directions.

2. Android in a nutshell

The Android architecture consists of 5 layers. The Linux kernel lives in the bottom layer (henceforth the Linux kernel).
The remaining four layers are Android-specific and we therefore collectively call them the Android stack:

Application Layer (A). Applications are at the top of the stack and comprise both user and system applications that have
been installed and executed on the device. Android applications are built as a set of independent executionmodules
called components. The reader can refer to [4] for further details regarding application components and their
interactions.

Application Framework Layer (AF). The Application Framework provides the main services of the platform that are
exposed to applications as a set of APIs. This layer provides the System Server, that is a process containing the
Android core components1 for managing the device and for interacting with the underlying Linux drivers.

Android Runtime Layer (AR). This layer consists of the Dalvik Virtual Machine (Dalvik VM, for short), i.e. the Android run-
time core component that executes application files built in the Dalvik Executable format (.dex). The Dalvik VM
is specifically optimized for efficient concurrent execution of virtual machines in a resource constrained environ-
ment.

1 http://events.linuxfoundation.org/slides/2011/abs/abs2011_yaghmour_internals.pdf for a comprehensive list of such service components.
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