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a b s t r a c t

We consider the heat flux identification problem (HFIP) based on the boundary
measurements for a nonlinear parabolic equation in 2-dimensional space. The standard
linearization algorithm is applied to the nonlinear direct problem. Themethod of Conjugate
Gradient Algorithm, based on the gradient formula for the cost functional, is then proposed
for numerical solution of the inverse heat flux problem. Numerical analysis of the
algorithm applied to the inverse problem in typical classes of flux functions is presented.
Computational results, obtained for random noisy output data, indicate how the iteration
number of the Conjugate Gradient Algorithm can be estimated. Numerical results illustrate
bounds of applicability of proposed algorithm, as well as its efficiency and accuracy.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We study the following inverse problems of determining the unknown flux terms f := (f1(x, t), f2(x, t)), in the following
heat conduction problem

ut = ∇(k(|∇u|2)∇u) + F(x, t), (x, t) ∈ ΩT

−k(|∇u|2)
∂u
∂n

= f1(x, t), (x, t) ∈ Γ T
1 ,

−k(|∇u|2)
∂u
∂n

= f2(x, t), (x, t) ∈ Γ T
2

u(x, t) = 0, (x, t) ∈ Γ T
3 ∪ Γ T

4 ,
u(x, 0) = u0(x), x ∈ Ω

(1.1)

from the supplementary boundary measurements h := (h1(x, t), h2(x, t)):

h1(x, t) = u(x, t), (x, t) ∈ Γ T
1 ;

h2(x, t) = u(x, t), (x, t) ∈ Γ T
2 ;

(1.2)
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where Γ T
i := Γi × (0, T ], i = 1, 2, 3, 4, x := (x1, x2), x ∈ Ω , ΩT := Ω × (0, T ] and Ω := (0, ℓx1) × (0, ℓx2) is assumed

to be a bounded simply connected domain with a piecewise smooth boundary Γ :=


i Γi, Γi ∩ Γj = ∅, i ≠ j, meas
Γi ≠ 0, i = 1, 2, 3, 4 and 0 < T < ∞ and ℓx1 , ℓx2 > 0.

Γ1 := {0} × (0, ℓx2), Γ2 := (0, ℓx1) × {0},
Γ3 := {ℓx1} × (0, ℓx2), Γ4 := (0, ℓx1) × {ℓx2}.

The initial temperature u0(x) and the boundary data h1(x, t) and h2(x, t) satisfy the consistency conditions u0|Γ1 = h1(x, 0)
and u0|Γ2 = h2(x, 0), respectively. For a given flux terms f1(x, t), f2(x, t) the problem (1.1) is defined to be the direct problem.
When the flux term f := (f1, f2) needs to be defined, the problem of identifying the unknown f using (1.1)–(1.2) is defined
as to be heat flux identification problem (HFIP).

Note that in practice the input/output data are obtained from physical experiments and may not be smooth functions.
Hence methods based on classical solution of the direct problem cannot be applied for large class of inverse problems. The
proposed approach uses the energy method [1] for the solvability analysis of the direct problem. Thus, we are interested in
weak (generalized) solution of the parabolic problem (1.1) in V̊ 1,0(ΩT ) := {v ∈ V 1,0(ΩT ) : v(x, t)|(Γ T

3 ∪Γ T
4 ) = 0, ∀t ∈ (0, T ]}.

Here V̊ 1,0 is the Sobolev space of functions with square integrable gradient ∇uwith the norm (see, [2]):

∥u∥V1,0(ΩT ) := max
t∈[0,T ]

∥u∥H0(Ω) + ∥∇u∥H0(ΩT ).

This weak solution u ∈ V̊ 1,0(ΩT ), with u(x, 0) = u0(x), satisfies the following integral identity:

1
2


Ω

[u2(x, t)]dx +


Ωt

k(|∇u|2)|∇u|2 dxdτ =


Ωt

F(x, τ )u dxdτ +
1
2


Ω

[u2
0(x)]dx

+

 T

0


Γ1

f1(x, t)u(x, t)dxdt +

 T

0


Γ2

f2(x, t)u(x, t)dxdt.

For the existence of the unique solution u(x, t) ∈ V 1,0(ΩT ) we require that the functions k(ξ), F(x, t), u0(x), satisfy the
following conditions [1]:

F(x, t) ∈ L2(ΩT ), f1(x, t) ∈ L2(Γ T
1 ), f2(x, t) ∈ L2(Γ T

2 ),
u0(x) ∈ L2(Ω), k(ξ) ∈ L∞(0, ξ ∗).

(1.3)

To investigate solvability conditions for the problem (1.1) in V̊ 1,0 we add following conditions to function k(ξ):
k(ξ) + 2ξk′(ξ) ≥ γ0 > 0, ξ ∈ [0, ξ ∗

]

k′(ξ) < 0. (1.4)

This study presents a systematic analysis of inverse flux problems aims to estimate as accurately as possible the f , under
the overspecified data h at the boundary, given by (1.2). The analysis is based on the proposed variational approach which
permits to derive explicitly gradient of the cost functional:

J(f ) =

 T

0


Γ1

[u(x, t; f ) − h1(x, t)]2dxdt +

 T

0


Γ2

[u(x, t; f ) − h2(x, t)]2dxdt (1.5)

corresponding to the above defined problem HFIP. The conjugate gradient method (CGM) with the derived explicit formula
for the gradient of the cost functional J(f ) is then applied for numerical solution of HFIP.

The paper is organized as follows. In Section 2, we defined quasi solution of the inverse flux problem, introducing
the admissible unknown fluxes. In Section 3, we linearize the nonlinear problem to linear one and derived the integral
relationship between solutions of the introduced adjoint problems and direct problem. Using these identities we prove the
Fréchet differentiability of the cost functional and unicity of the solution in Section 4. In Section 5 the numerical results for
the CGM applied to the HFIP are presented for various noise free and noisy output data.

2. The quasi-solution approach of the inverse problems

Let us define the set W := F1 × F2 ⊆ L2(Γ T
1 ) × L2(Γ T

2 ) of admissible unknown fluxes f1 ∈ F1 ⊂ L2(Γ T
1 ) and

f2 ∈ F1 ⊂ L2(Γ T
2 ), which satisfy the following conditions:

−∞ < F1 < f1(x, t) < F1 < ∞, a.e. ∀(x, t) ∈ Γ T
1

−∞ < F2 < f2(x, t) < F2 < ∞, a.e. ∀(x, t) ∈ Γ T
2 .

(2.1)

Evidently,W is a closed and convex subset in L2(Γ T
1 )×L2(Γ T

2 ). For a given element f ∈ W wedenote byu(x, t; f ) ∈ V̊ 1,0(ΩT ),
with u(x, 0; f ) = u0(x), the weak solution of the direct problem (1.1). If the function u(x, t; f ) satisfies also the additional
condition (1.2), then it will be defined as a strict solution of the problem HFIP, accordingly. In this case, one can introduce
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