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a b s t r a c t

The generalized finite difference method (GFDM) has been proved to be a good procedure
to solve the problem ofwave propagation. As other numericalmethods, when using a finite
model to study an unbounded domain, a way of avoiding wave reflection at the boundaries
is needed. Perfectly Matched Layers (PML) absorbing boundary conditions are commonly
used.

This paper aims to obtain a Perfectly Matched Layer formulation for the GFDM, for
which the stability is guaranteed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Meshlessmethods are, step by step, being considered as an alternative ofmesh-based numericalmethods, to solve certain
problems where these conventional methods present difficulties that meshless methods can avoid.

An important path in the evolution of meshless methods has been the development of the Generalized Finite Difference
Method (GFDM), also called meshless finite difference method [1].

The application of GFDM to the solution of the problem of seismic wave propagation using PML absorbing boundary was
introduced by Ureña, Benito, Salete and Gavete [2]. These authors have also applied this meshless method to the solution
of dynamic problems of beams and plates [3], to solve the advection–diffusion equation [4] and to solve parabolic and
hyperbolic equations [5].

Berenger [6] first created a PML for electromagnetic problems in a Finite Element (FE) numerical model. Their equations
are based on a field splitting which results in mathematical expressions that cannot be easily manipulated.

Chew and Liu [7] first proposed the PML for elastic waves in solids and proved that reflections are null in a regular elastic
medium.

PML has been applied to wave propagation in poroelastic media by Zheng and Huang [8]; to elastic problems by Collino
and Tsogka [9], Basu and Chopra [10] and with a FDM schemeMoczo et al. [11], Kirsch [12], Skelton et al. [13], Johnson [14],
and for wave equation written as a second-order system in displacements by D. Komatitsch and J. Tromp [15] and Benito
et al. [16].
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This paper shows the application of GFDM to solve these kinds of problems. The scheme used and the analyses of stability
and dispersion have been clearly referenced. The use of PML absorbing boundary conditions in the model is also explained
and the influence of the loss profile is shown. Finally, the efficiency of the method for solving a variation of Lamb’s problem
on a domain with a simple topographical feature is illustrated. Also, another example including a hole in the domain is
presented.

2. Explicit generalized finite differences schemes for the seismic wave propagation problem

The equations of motion for an elastic, homogeneous, isotropic medium in the domainΩ ⊂ R2 are

ρUi,tt = (λ+ µ)Uj,ji + µUi,kk (1)

with the boundary conditions that apply in each case, studied hereinafter.
Ui are the components of the displacement, ρ is the density, λ is the Young’s modulus andµ is the Shear modulus (Lamé

elastic coefficients).
In the equations throughout this article, index notation and the Einstein notation convention have been used (subindices

1 and 2 should be read as x and y directions).
The aim is to obtain explicit linear expressions for the approximation of partial derivatives at the points of the domain.

First of all, an irregular grid or cloud of points is generated in the domainΩ .
On defining the central node with a set of nodes surrounding that node, the star then refers to a group of established

nodes in relation to a central node. Every node in the domain has an associated star assigned to it.
This scheme uses the central-difference form for the time derivative.
Following [1,17–19,3], the explicit FD formulae for the second spatial derivatives with second and fourth order

approximation (p = 2, 4) for the spatial derivatives are obtained
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where capital letters are used for exact values and small letters are used for approximated values. The superscript n denotes
time step, the superscripts 0 and l refer to the central node and the rest of nodes of the star respectively, N is the number
of nodes in the star (in this work for the second order approximation N = 8 and the star nodes are selected by using the
distance criteria [20], and the fourth order approximation N = 30 and the star nodes are selected by using the distance
criteria) and hl

i = xli − x0i .
m0,p

jk are the coefficients thatmultiply the approximate values of the functionsUi at the central node (nu0
i ) for the time n1t

in the generalized finite difference explicit expressions for the space derivatives, and ml,p
jk are the coefficients that multiply

the approximate values of the functions Ui at the other nodes of the star (nul
i). In all these expression the cross-terms are

equal.
The replacement in Eq. (1) of the explicit expressions obtained for the spatial derivatives and the central-difference

formula for the time derivatives leads to the explicit difference scheme

n+1u0
i = 2 nu0

i −
n−1u0

i +
(1t)2

ρ


(λ+ µ)


−m0,p

ji
nu0

j +

N
l=1

ml,p
ji

nul
j



+µ


−m0,p

kk
nu0

i +

N
l=1

ml,p
kk

nul
i


+Θ[(1t)2, (hi)

p
] (3)

whereΘ represents the error of the scheme.

3. Stability criterion of the scheme

For the stability analysis the idea is to make a harmonic decomposition of the approximated solution at grid points and
at a given time level (n)

nu0
j = Aξ neik

T x0; nul
j = Aξ neik

T xl ∀j = 1, 2; l = 1 · · ·N (4)

where i is the imaginary unit, j are the directions of the orthogonal coordinate axis, the vectors x0 and x1 (l = 1, . . . ,N)
represent the position of the central node and the rest of the nodes of the star respectively, N is the number of nodes in the
star, and

ξ = e−iw1t
; k = κ


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
. (5)
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