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a b s t r a c t

In this paper, we investigate and use the new modified exp(−Ω (ξ))-expansion method,
(MEM). We apply the new MEM to nonlinear long–short-wave interaction systems
(NLSWIS). Among our findings are sets of solutions including, but not limited to, new
hyperbolic, complex, and dark soliton solutions. Not only is MEM shown to be highly
adaptable for partial differential equations with strong nonlinearities, but also, it turns out
to be highly efficient, despite its ease.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Certain is it that nonlinear long–short-wave interaction systems, (NLSWIS), do mask inherently significant nonlinear
processes, predictive of highly complex physical phenomena. NLSWIS processes do model nonlinear dynamical interaction
between low-frequency long waves, and high-frequency short waves [1]. Highly motivating is uncovering basic physical
interactions leading to further study and investigation of various nonlinear interactions underlying the general solution
structure including: analytical, dark, and approximate solutions. The formation of special nonlinear waves such as
solitons/soliton-like structures, shock waves, rogue waves, and vortex solitons is symbolized with the help of nonlinear
wave interactions in the general forms of physical systems [2]. NLSWIS’s are not only rich complex models for strong
nonlinearities, but also represent the constitutive prototypes for highly interesting interaction phenomena, emanating from
various applications, such as gravity andwaterwaves, plasma and bio-physics, aswell as nonlinear optics, to name a few, [3].
For instance, long gravity wave and capillary–gravity wave for finite-depth water interactions findings by Grimshaw in [4]
are of major significance. In addition, his depiction of interactions between ultra-long equatorial waves, and short gravity
waves in [5], remains notably significant in this regard. Alternative but very recent treatments of the regularized long wave
equation can be found in Alam and Belgacem [6].

This paper is divided in the following manner: fundamental properties are provided in Section 2. In Section 3, we
implement the MEM on the NLSWIS (1), and obtain new analytical solutions, related physical phenomena interpretation
are discussed in Section 4. Relevant conclusions pertaining to the application of MEM to current NLSWIS models is done in
Section 5.
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2. Fundamental properties of the MEM

To illustrate the efficiency of the new modified exp (−Ω (ξ))-expansion method, (MEM), we choose the multi-
dimensional NLSWIS given in [7], related to physical conservation lawwith viscosity in [8], and introduced by Benney in [9],

iut + uxx − uv = 0,
vt + vx +


|u|2


x = 0. (1)

This approach is based on the modified exp (−Ω (ξ))-expansion method [10–12]. In this section, we consider the
following system of nonlinear partial differential equations [13–15];

P1 (u, v, ut , vt , ux, vx, uxx, vxx, . . .) = 0,
P2 (u, v, ut , vt , ux, vx, uxx, vxx, . . .) = 0, (2)

where, u = u (x, t) and v = v (x, t) are unknown functions, P1 and P2 are polynomials in u (x, t) and v (x, t), and then,
its derivative where highest order derivatives and nonlinear terms are involved and the subscripts stand for the partial
derivatives. The basic phases of MEM are expressed as follows:
Step 1: Combine the real variables x and t by a compound variable ξ

u (x, t) = eiηU (ξ) , η = αx + βt,
v (x, t) = V (ξ) , ξ = kx + wt. (3)

If we take the necessary derivations of Eqs. (3) for Eq. (1), we get the following expressions,

ux = ieiη αU + keiηU ′, ut = ieiη βU + weiηU ′,

uxx = −α2eiη U + 2i αkeiηU ′
+ k2eiηU ′′,

vt = wV ′, vx = kV ′,

|u|2


x = k


U2′

...

(4)

wherew, β are the frequencies of the travelling waves and α, k are the numbers of the waves. By using Eq. (4) in Eq. (2), we
get the following nonlinear ordinary differential equation (NODE),

NODE(U,U ′,U ′′,U ′′′, . . .) = 0, (5)

where, NODE is a polynomial in U , and its ordinary derivatives with respect to ξ .
Step 2: We assume that the travelling wave solutions for Eq. (5) can be stated in the following form,

U (ξ) =

N
i=0

Ai [exp (−Ω (ξ))]i

M
j=0

Bj [exp (−Ω (ξ))]j
=

A0 + A1 exp (−Ω (ξ))+ · · · + AN exp (−NΩ (ξ))
B0 + B1 exp (−Ω (ξ))+ · · · + BM exp (−MΩ (ξ))

, (6)

where, Ai (0 ≤ i ≤ N) and Bj (0 ≤ j ≤ M) are constants to be determined, such that AN ≠ 0, BM ≠ 0, and, Ω = Ω (ξ)
satisfies the following ordinary differential;

Ω ′
= µ exp (Ω)+ exp (−Ω)+ λ. (7)

The following exact analytical solutions [13–15] can be written from Eq. (7):
Family-1: If µ ≠ 0, λ2 − 4µ > 0,

Ω (ξ) = ln


−

λ2 − 4µ
2µ

tanh


λ2 − 4µ

2
(ξ + E)


−

λ

2µ


, (8)

where E is integral constant.
Family-2: When µ ≠ 0, λ2 − 4µ < 0,

Ω (ξ) = ln


−λ2 + 4µ

2µ
tan


−λ2 + 4µ

2
(ξ + E)


−

λ

2µ


. (9)

Family-3: When µ = 0, λ ≠ 0, and λ2 − 4µ > 0,

Ω (ξ) = − ln


λ

exp (λ (ξ + E))− 1


. (10)
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