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1. Introduction

In general the L>(L?)-error of the standard finite element Galerkin method for first order hyperbolic systems converges
in the order @ (h*) where h is the mesh size and k the order of the finite elements, see Dupont, [ 1], one unit less than expected.
Optimal convergence has been proved only in some particular cases (such as linear elements or cubic splines on uniform
grids and for periodic boundary conditions, see Dupont [ 1], Thomee and B. Wendroff, [2]).

Various regularization methods have been employed to improve the convergence rate on unstructured grids. In the class
of filter based regularization methods, such as the one used here we mention Layton and Connors, [3], Ervin and Jenkins, [4],
Dunca and Neda [5]. If periodic boundary conditions are assumed and unstructured grids and order k elements are used,
to the author’s knowledge the best convergence rate available in the literature is @ (h*t%), see for example the models in
Layton and Connors, [3], or Dunca and Neda [5].

This paper considers a numerical scheme to solve the model advection equation

U+ d-Vu=f, u0)=u (1)

optimally in case d is a constant vector and periodic boundary conditions are assumed. The mesh and the finite element
spaces Xy are chosen such that a general approximation property, see inequality (4), holds. The exact solution is not
necessarily smooth, but it should be a bit more regular (two powers) than in the classical suboptimal theory.

The algorithm presented herein is based on the idea developed in the papers of Dunca, John and Layton, [6,7], which is
that, in some cases, the mean finite element error has a higher convergence rate than the finite element error itself. Here the
mean v of v is computed using the differential filter (on the fixed length scale § = 1), see Germano, [8], Dunca and John, [6],
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v = 4§(v), where
T— AT = . @)
To approximate optimally the solution u of Eq. (1), we first apply the differential operator I — A to Eq. (1) to get
I—Mug+a-Vi—Au=(>1-2f, (- 2)u©) = — Au.

Therefore (I — A)u is the solution w of the problem

we+ a-Vw=(>1-2A)f, w0 = (- A)u 3)

i.e, w = (I — A)u, and therefore, using Eq. (2), we obtain u = w.

In this regard we may view the solution u of problem (1) as being the exact average w of the solution w of problem (3).
As such, one expects better convergence rate if, instead of solving directly (and suboptimally) with FEM problem (1), one
first solves with FEM problem (3) to get wy, (which is a suboptimal approximation of w) and then filters wj, to obtain wy". In
Section 4 we prove that, if u satisfies several regularity assumptions, then wj" is indeed an optimal approximation of w = u,
ie. |wp" — Ull oo g0,11,12(82)) 1S O(h*1) where k is the order of the finite elements.

2. Mathematical setting

We let £2 be the 2d or 3d periodic box. The norm ||-|| will denote the usual L> norm on 2 and (-, -) will be the corresponding
L? inner product on £2. For a given natural number k, H* will denote the usual Sobolev space of order k on £2 and || - ||x and
| - | are its usual Sobolev norm and seminorm respectively.

H};(.Q) will denote the closure of the smooth, periodic functions defined on £2 in the Sobolev || - ||y norm. For k = 1 we
let X = H}(£2) and for k = 0 we let [3(£2) = H2(£2).

In the sequel X;, C X will denote a conforming finite element space on a quasi-uniform mesh of size h on £2 satisfying
the general approximation assumption that there exists a general constant C such that

v — vhll + Rl Vv — Vo || < CH vl (4)

for some interpolant vy € X ofv € X N H"1! where1 <1< k.
Foru € Li(()) its meanu € Hﬁ(Q) C Li(.Q) is defined using the differential filter, see Germano, [8], as the unique
solution of the PDE

—Au+u=u (5)

with periodic boundary conditions. We let § : Li(()) — Li (£2), $u = u, denote the differential filtering operator.
We also let the discrete mean " € X, of u to be the classical FEM approximation of u, defined by

(VI", Vop) + @", va) = (u, vy)

for any vy, € Xy. We let 8, : [2(£2) — L2(£2), 8yu = u", denote the discrete differential filtering operator.

Remark 2.1. One can show, see [6,9,10] that the differential filtering operators 4, 4§ are selfadjoint and they satisfy the
stability inequality

ol < lvll, 110" < llvll, Vo e (). (6)

The following known result states the classical FEM convergence rate of the elliptic second order PDE (5), obtained using
Céa’s lemma and the Aubin-Nitsche duality method, see Brenner and Scott, Theorem 5.7.6 on page 144, [11].

Remark 2.2. For u € X there holds

[T — " + hl| VT — Va@"|| < Ch*[[ully < Ch*|lu]. @)
In case u € Hy~'(£2) we have that

[a =" + hl| VT — Va"|| < B Ul < CH ey (8)

Here C is a general constant not depending on u or h.
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