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a b s t r a c t

In order to solve the Toeplitz-plus-diagonal linear systems arising from image restorations
efficiently, we propose a sparse approximate inverse preconditioner based on the
Sherman–Morrison–Woodbury formula. The preconditioner can be constructed through
an incomplete factorization combined with some dropping strategies. When the
preconditioner is applied to the conjugate gradient method for solving the Toeplitz-plus-
diagonal linear systems, numerical results show that our preconditioning method is more
effective than other existing ones.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Toeplitz systems often appear in fields such as image processing, numerical analysis [1,2], etc. An n-by-n Toeplitz matrix
takes the form

Tn = (tj−i)
n
i,j=1 =


t0 t1 · · · tn−2 tn−1
t−1 t0 · · · tn−3 tn−2
...

...
. . .

...
...

t−n+2 t−n+3 · · · t0 t1
t−n+1 t−n+2 · · · t−1 t0

 . (1.1)

Specially, anm-by-m block Toeplitz matrix with n-by-n Toeplitz blocks taking the form

Tmn =


T0 T1 · · · Tm−2 Tm−1
T−1 T0 · · · Tn−3 Tn−2
...

...
. . .

...
...

T−m+2 T−n+3 · · · T0 T1
T−m+1 T−n+2 · · · T−1 T0

 , (1.2)

is called the BTTBmatrix, where the blocks Ti (i = 0, ±1, . . . ,±(m−1)) are themselves Toeplitz matrices of order n. In this
paper, we mainly focus on solving the Toeplitz-plus-diagonal linear systems of the form

(Tmn + D)x = b, (1.3)

where Tmn is defined in (1.2), D ∈ Rmn×mn is a diagonal matrix and b ∈ Rmn is the right vector.
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In order to implement the image restoration, a 2-dimensional deconvolution problem should be considered [3–7], which
is an inverse process of 2-dimensional convolution. As for anN-by-N image X , the corresponding 2-dimensional convolution
operation can be expressed in the matrix–vector notation as

b = Ax, (1.4)

where the vector x ∈ RN2
is formed by row ordering the original image and contains the concatenated rows of the matrix

X , and A is a (2M + N − 2)-by-N block column circulant matrix with (2M + N − 2)-by-N column circulant blocks as the
following [7]

A =



A−M+1 0
A−M+2 A−M+1

...
. . .

. . .

A0
. . . A−M+1

...
. . .

...

AM−2
. . .

AM−1
. . . A0

AM−1
. . .

. . .
...

0 AM−1



, (1.5)

where the blocks Ai (i = 0, ±1, . . . ,±(M − 1)) are themselves column circulant matrices of the form

Ai =



ai,−M+1 0
ai,−M+2 ai,−M+1

...
. . .

. . .

ai,0
. . . ai,−M+1

...
. . .

...

ai,M−2
. . .

ai,M−1
. . . ai,0

ai,M−1
. . .

. . .
...

0 ai,M−1



. (1.6)

Obviously, the resulting vector b is of length (2M + N − 2)2.
In the image restoration, the goal of deconvolution is to compute xwithA and b known. This problem is generallymodeled

as the linear squares problem [4–8]

min
x

∥b − Ax∥2. (1.7)

However, since all the realistic image processing procedures involve noises and deconvolution algorithms are very sensitive
to noises, some form of regularization needs to be incorporated to stabilize the computations. Tikhonov regularization is
verified to have good recovery qualities when it is used to restore blurred and noisy images in recent years [4–7]. Based on
it, the original problem (1.7) is transformed into the following problem

min
x

b0


−


A
λL


x

2
, (1.8)

where the scalar λ ≠ 0 is a regularization parameter and the matrix L ∈ RN2
×N2

is a regularization operator. As is well
known, the solution of (1.8) can be obtained by solving its normal equation

(λ2LT L + ATA)x = ATb. (1.9)

The regularization matrix L usually can be the identity matrix or a discrete form of the first or second derivative [4–7].
When L is the identitymatrix I , the restorationmodel minimizes ∥x∥2

2, which can be viewed as the energy of the image X [1].
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