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a b s t r a c t

It has been shown that redundant signal representation, e.g. tight frame, plays important
role in compressed sensing image restoration. In order to get a good sparse representation,
one hasmade enduring efforts to pursue tight frames. Although there are some tight frames
underwhich a type of images has a good sparse approximation, another type of imagesmay
not have sparse approximation because of the images’ great difference in structure. This
paper presents a novel compressed sensing image restorationmethodbased ondata-driven
multi-scale tight frame. This method derives a discrete multi-scale tight frame system
adaptive to the original image from the input compressed sensing image. Such an adaptive
tight frame construction scheme is applied to compressed sensing image restoration. The
experimental results show our approach’s efficiency.
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1. Introduction

Compressed Sensing [1,2] (CS) concerns the problem of recovering a high-dimensional sparse signal f from a small
number of linear measurements

g = Af + e, (1)

where A is an m × n sensing matrix with m ≪ n independent of signal f such as Gaussian sensing matrices, and e ∈ Rm is
a noise term modeling measurement error. The goal is to restore the unknown signal f ∈ Rn based on the measurements
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g ∈ Rm. Generally, the unknown signal f is assumed to be sparse or compressible in an orthogonal basis in traditional CS
literature. In this paper, signals are assumed to be sparse in a redundant frame D ∈ Rn×d(d > n), that is f = Dx, where x is
sparse or compressible in the frame D.

One effective method of restoring the original f from the measurements g is given by the ℓ1-analysis method. Empirical
studies have shown very promising results for the ℓ1-analysis problem [3]:

f̂ = argmin
f̂∈Rn

D∗ f̂ 
1

s.t.
g − Af̂


2
≤ ε (2)

where ε is a likely upper bound on the noise level. It was shown that when D is an n × d arbitrary tight frame and the
measurement matrix A is an m × n independent identically distributed (i.i.d.) Gaussian matrix with m on the order of
s log(d/s), the solution to (2) satisfied the following bound

f − f̂

2
≤ C0ε + C1

D∗f − (D∗ f̂ )s
1

√
s

, (3)

for somenumerical constantsC0 andC1, andwhere (D∗f )s is the vector consisting of the largest s entries ofD∗f inmagnitudes.
Tight frames have received increased attention in image processing applications in order to efficiently represent natural

images, including ridgelets, shearlets, curvelet, and so on [4–8]. However, this fixed redundant signal presentation system
may be applicable to cartoon-type images but not to texture-type images, for their heavily dependence on some functional
assumptions only under which natural images are sparse or compressible. There are various natural images varying greatly
in terms of geometrical structure. The tight frame constructed for efficiently sparsilizing one type of images may not
always sparsilize the other type of ones [9,10]. Thus, developing a tight frame system driven by the input data with better
performance in terms of sparse approximation is a better method.

In recent years, ‘‘adaptivity’’ has been increased concerned by learning approaches [11–14], which get better sparsity by
learning an over complete dictionary from the input signals, especially for the natural textural images. As a result, these
learning approaches tend to be outstanding of the image restoration methods based on the signal’s sparsity. However, the
learned over complete dictionaries lack several ‘‘good’’ properties which is desired for many applications in image restora-
tion. The perfect reconstruction property is in the first place, for which ensures that the input signals can be represented
by its canonical expansion perfectly like the orthonormal bases [9]. Also, it is still challenging to develop a stable numerical
algorithm for evaluating the optimal over complete system.

According to above reasons, we aim to develop a novel approach to achieve a discrete data-driven multi-scale tight
frame system in this paper. The constructed tight frame would like to approximate the input image more sparsely than the
existing fixed tight frames. In contrast to the existing fixed frame (FF) [15] and the general learned over complete dictionaries
(e.g. the K-SVD method [16]), the constructed multi-scale tight frames can efficiently capture the complex texture patterns
in the compressed sensing image restoration experiments, and have the property of ‘‘perfect reconstruction’’. Moreover, the
minimization problems arising in the construction of multi-scale tight frames are better conditioned than those of general
learned over-complete dictionaries, owing to the Parseval identity for tight frames. Numerical experiments show that the
constructed tight system enhances the recovery performance compared with the FF and the K-SVD method.

2. Preliminaries

We first present here some preliminaries about frames and tight frames in a Hilbert space H , and then give the method
of generating multi-level frame operator from the frame filters. Let Z denote the set of all integers, ⟨·, ·⟩ and ∥·∥ denote
the usual inner product, a norm of a Hilbert space H , respectively. If let a vector v = (v1, v2, . . . , vd)

T , then we denote

∥v∥p =
d

i=1 |vi|
p
1/p

, 0 < p < ∞. By abuse of notation, ∥v∥0 := #{i : vi ≠ 0}. If ∥v∥0 ≤ k, we say that the
vector v is k-sparse. By a sparse representation, we mean that for a signal of length d, we can represent it with k ≪ d
nonzero coefficients; by a compressible representation, we mean that the signal is well-approximated by a signal with only
d nonzero coefficients.

A sequence {ϕn}n∈Z ⊂ H is called a frame for H if there are two positive constant numbers c1 and c2 such that

c1 ∥f ∥22 ≤

n∈Z

|⟨ϕn, f ⟩|2 ≤ c2 ∥f ∥22 , ∀f ∈ H (4)

when c1 = c2 = 1, the frame {ϕn}n∈Z is a tight frame for H . There are two operators associated with a given frame
{ϕn}n∈Z : the analysis operator D defined by [9,10]

D : f ∈ H → {⟨f , ϕn⟩} ∈ ℓ
2 (Z) , (5)

and its adjoint operator D∗, also called the synthesis operator, defined by

D∗ : {an} ∈ ℓ2(Z)→

n

anϕn ∈ H. (6)
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