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a b s t r a c t

Thiswork presents an application of themethod of steepest descent to estimate quadrature
errors. Themethod is used to provide a unified approach to estimating the truncation errors
which occur when Gauss–Legendre quadrature is used to evaluate the nearly singular
integrals that arise as part of the two dimensional boundary elementmethod. The integrals
considered here are of the form

 1
−1

h(x) dx
((x−a)2+b2)α

, where h(x) is a ‘‘well-behaved’’ function,
α > 0 and −1 < a < 1. Since 0 < b ≪ 1, the integral is ‘‘nearly singular’’, with a sharply
peaked integrand.

The method of steepest descent is used to estimate the (generally large) truncation
errors that occur when Gauss–Legendre quadrature is used to evaluate these integrals, as
well as to estimate the (much lower) errors that occur when Gauss–Legendre quadrature is
performed on such integrals after a ‘‘sinh’’ transformation has been applied. The new error
estimates are highly accurate in the case of the transformed integral and are shown to be
comparable to those found in previous work by Elliott and Johnston (2007). One advantage
of the new estimates is that they are given by just one formula each for the un-transformed
and the transformed integrals, rather than the much larger set of formulae in the previous
work. Another advantage is that the new method applies over a much larger range of α
values than the previous method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

The boundary element method [1] is a standard technique that is used to solve many important engineering problems
and, when it is implemented, it is necessary to evaluate numerically three main types of integrals: non-singular, singular
and nearly singular. We focus here on the integrals that occur when the source point is very near to, but not on, the element
of integration and which are described as ‘‘nearly singular’’. In this case the integrand develops a sharp peak, with the result
that Gauss–Legendre quadrature is unable to produce good approximations to the integral.

The accurate evaluation of these integrals is particularly important when calculations must be made near to the
boundary; for example, when calculating the solution in potential problems or evaluating stresses and displacements
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in plane elasticity problems. Examples of such problems include studies of:- shell-like structures [2], transient heat
conduction [3], elasticity [4], elastoplastic contact [5], stress intensity sensitivities [6], crack growth [7] and thin layered
coatings [8].

A number of different methods have been proposed to evaluate the nearly singular integrals that occur in a 2D applica-
tion of the boundary element method. One group of such methods involves the use of non-linear transformations, such
as the cubic polynomial transformation [9,10], the bi-cubic transformation [11], the sigmoidal transformation [12], the
co-ordinate optimisation transformation [13] and the distance transformation [14]. More recently introduced transforma-
tions include the exponential transformation [15] and the very accurate and easily implemented so-called sinh transforma-
tion method [16–18], which has been shown to be more accurate, by several orders of magnitude [16], than simply using
Gauss–Legendre quadrature. The advantages and disadvantages of these and other approaches are well discussed in the
paper by Zhang and Sun [15].

In Section 2 we will use the method of steepest descent to provide estimates of the error that occurs when
Gauss–Legendre quadrature is used to evaluate 1D nearly singular integrals of the form given in Section 1.2. Then, in
Section 3,we adopt a similarmethod of steepest descent approach, this time applied to integrals that are first transformed by
a sinh transformation afterwhichGauss–Legendre quadrature is applied. Both types of error estimateswill thenbe compared
in Section 4 to the exact errors, as well as to previous error estimates that are produced by a different method [17] and then
final conclusions will be drawn.

1.2. Quadrature error

In this paper we propose to use the method of steepest descent in order to estimate the truncation error when n-point
Gauss–Legendre quadrature is used to evaluate the integral I(α, a, b) defined by

I(α, a, b) :=

 1

−1

h(x) dx
((x − a)2 + b2)α

, (1.1)

where h(x) is a real function which is ‘‘well-behaved’’. Here we will assume that α > 0, −1 < a < 1 and 0 < b ≪ 1, so
that the integrand has a singularity close to the interval of integration (−1, 1).

To be precise, in this work we consider the integrals

Ik(α, a, b) :=

 1

−1

hk(x) dx
((x − a)2 + b2)α

, (1.2)

where h1(x) ≡ 1, h2(x) = x − a, h3(x) = 1 − x2 and h4(x) =
√
1 + x2, since these are examples of integrals of the type

that appear in the 2D boundary element method [16,17]. Here hk(x) is either a real polynomial (basis function) that does
not have zeros at the same points as the denominator of (1.1) (I1, I2 and I3) or a function that has arisen from the Jacobian
of the transformation (I4).

From [19, §25.4.29] we have, for n-point Gauss–Legendre quadrature that 1

−1
f (x) dx =

n
i=1

wi,nf (xi,n)+ En(f ), (1.3)

where xi,n are the zeros of the Legendre polynomial Pn and theweightswi,n are given by 2/((1−x2i,n)(P
′
n(xi,n))

2). On assuming
that the definition of the integrand f can be continued into the complex plane, Donaldson and Elliott [20] have shown that
the truncation error En(f ) can be expressed as a contour integral given by

En(f ) =
1

2π i


C

kn(z)f (z) dz, (1.4)

where C is a closed contour enclosing the interval (−1, 1), described positively (i.e. counterclockwise), and such that f is
analytic on and within C. The function kn is defined by

kn(z) :=
1

Pn(z)

 1

−1

Pn(t) dt
z − t

, z ∉ [−1, 1]. (1.5)

On assuming that n ≫ 1 we have, for z bounded away from the interval [−1, 1], that

kn(z) =
cn

(z +
√
z2 − 1)2n+1

, (1.6)

where

cn := 2π
(Γ (n + 1))2

Γ

n +

1
2


Γ

n +

3
2

 , (1.7)

which is approximately 2π for n ≫ 1.
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