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a b s t r a c t

The analysis of interacting populationmodels is the subject of much interest in mathemat-
ical ecology. Moreover, the persistence and extinction of these models is one of the most
interesting and important topics, because it provides insight into their behavior. The mean
extinction-time for stochastic population models considered in this paper depends on the
initial population size and satisfies a stationary partial differential equation, related to the
backwardKolmogorov differential equation, a linear second-order partial differential equa-
tion with variable coefficients. In this communication we review several papers where we
have proposed some numerical techniques in order to estimate the mean extinction-time
for stochastic population models. Besides, we will compare the theoretical predictions and
numerical simulations for stochastic differential equations (SDEs). Thiswork can be viewed
as a unified review of the contributions de la Hoz and Vadillo (2012), de la Hoz et al. (2014)
and Doubova and Vadillo (2014).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic population models are systems of stochastic differential equations (SDE) with a deterministic part plus a
stochastic one. In classic books such as for example [1] or [2], we can find results on the evolution, persistence and extinction
for deterministic population models, but the stochastic models are more complicated and have quite different persistence
and extinction behaviors.

The SDE system for the dynamics of n interacting populations has the following form:
dX(t) = µ(t,X)dt + B(t,X)dW(t),
X(0) = X0,

(1)

where X(t) = (X1(t), . . . , Xn(t))t is an n-dimensional random variable, and W(t) = (W1(t), . . . ,Wm(t))t are m indepen-
dent Wiener processes. The vectorial function µ(t,X) is called the drift, and B(t,X) is the diffusion matrix.

Notice that if the matrix B ≡ 0, then this system reduces to a standard deterministic model for the population dynamics.
One of the major goals of stochastic population dynamics (1) is to predict finite persistence time, i.e. the time when one

or more components of the population go to zero. In this paper, T will be the random variable that indicates the persistence
time:

T := inf{t ≥ 0 : Xi(t) = 0 for any i = 1, . . . , n}.
Notice that there are other definitions of persistence, as for example weak persistence, weak persistence in themean, strong
persistence in the mean, etc. (see [3, p. 444]). The stochastic variable T obviously depends on the initial population size X0.
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On the other hand, let us also introduce the expectation time until extinction

τ := E(T ).

It is clear that the variable τ also depends on the initial population size, i.e. τ = τ(X0). Let us notice that this mean
persistence time can be computed by solving stationary partial differential equations, which are related to the backward
Kolmogorov equation (see [4, p. 443]; we refer to [5, p. 150] or Chapter 8 of [6] for a clear review of these equations). The
backward Kolmogorov equations are linear second-order partial differential equations (PDEs) with variable coefficients. It is
well known that it is possible to compute an analytical solution only in a few simple cases, see for example [4], for a popula-
tion model with linear birth and death rates, or [7], where the exact expressions are given for the extinction-time of a class
of birth–death processes. In general, we can only compute numerical approximations, see for example [8], where central
difference approximations are used. In this paper we use a Finite Element Method (FEM). There is an ample bibliography
about FEM, see for instance [9] or [10] for a good introduction. Themore popular reference on FEM in solidmechanics are the
books [11,12]. Generalization to other fields of physics or engineering have been done by applied mathematicians through
the concept of variational formulation of partial differential equations (see for example [13]).

This paper is organized as follows. In Section 2, we describe a Lotka–Volterra predator–prey model. We will estimate its
mean extinction-time using the numerical approximations of the associated Kolmogorov equation andwewillmake a direct
comparison between predictions and numerical simulations. In Sections 3 and 4 we will analyze the mean extinction-time
for more complicated models. Finally in Section 5 we draw the main conclusions.

Our numerical methods were implemented inMatlab© and FreeFem++, the experiments were carried out in an Intel(R)
Core(TM)2 Duo CPU E6850 @ 3.00 GHz. The codes for the numerical tests are available on request.

2. Extinction-time for a Lotka–Volterra predator–prey model

2.1. The Lotka–Volterra model

A classical model in mathematical ecology is the standard Lotka–Volterra predator–prey model. Let us consider a simple
ecosystem consisting of preys (for example rabbits) that have an infinite supply of food and predators (for example foxes)
that need prey for their food. Following [6, p. 359] or [5, p. 149], this problem is modeled by a nonlinear SDE system:dR = R(2 − αF)dt +


R(2 + αF)dW1, t > 0,

dF = F(αR − 1)dt +


F(αR + 1)dW2, t > 0,

R(0) = r, F(0) = f ,
(2)

where R = R(t) and F = F(t) are random variables corresponding to the number of preys and predators, respectively, r and
f are the initial population sizes, α is a positive constant andWj(t), for j = 1, 2, are two independent Wiener processes.

If α = 0, the two populations do not interact and the foxes die off from starvation. If α > 0, the foxes encounter the
rabbitswith a probability that is proportional to the product of their numbers. The deterministic part is very simple: its phase
plane has a center in (1/α, 2/α), and the solutions are always periodic with a period that depends on the initial conditions
(see left hand-side of Fig. 1). These solutions cannot be expressed in terms of other known functions and the equations must
be solved numerically. Moreover, as was already commented in [14], even tiny amounts of environmental noise cause huge
differences between the stochastic model (2) and the associated deterministic model. On the right hand-side of Fig. 1, we
have plotted three types of solutions corresponding to the initial values R(0) = 100, F(0) = 150: the deterministic solution
(blue), a stochastic path for 0 ≤ t ≤ 20 (black), and the mean of hundred stochastic paths for 0 ≤ t ≤ 12 (green).

The mean extinction-time τ = τ(r, f ) for (2) satisfies the following stationary backward Kolmogorov equation:
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Taking into account that the number of preys and predators cannot exceed some positive values Mr and Mf , respectively,
we have the following boundary conditions:

τ(0, f ) = τ(r, 0) = 0, (r, f ) ∈ (0,Mr) × (0,Mf ),

∂τ
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(Mr , f ) = 0, f ∈ (0,Mf ),
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(r,Mf ) = 0, r ∈ (0,Mr).

(4)

We can extend this procedure to higher-order moments τ p
= τ p(r, f ). More precisely, it can be easily shown that τ p satisfy

the following partial differential equation
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with the above boundary conditions (4) written for τ p.
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