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a b s t r a c t

In this paper, we develop a new numerical method with asymptotic stability properties for
solving stochastic differential equations (SDEs). The foundations for the new solver are the
Steklov mean and an exact discretization for the deterministic version of the SDEs. Strong
consistency and convergence properties are demonstrated for the proposedmethod.More-
over, a rigorous linear and nonlinear asymptotic stability analysis is carried out for themul-
tiplicative case in a mean-square sense and for the additive case in a path-wise sense using
the pullback limit. In order to emphasize the characteristics of the Steklov discretization
we use as benchmarks the stochastic logistic equation and the Langevin equation with a
nonlinear potential of the Brownian dynamics. We show that the Steklov method has mild
stability requirements and allows long-time simulations in several applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, stochastic differential modeling has become a rapidly-growing research area. Historically, it appeared
as an extension of the deterministic differential modeling of overidealized situations with fluctuating behavior of the
analyzed physical phenomenon. Actually, it is an important research area by itself that describes important phenomena
such as turbulent diffusion, spread of diseases, genetic regulation, andmotion of particles [1–3]. However, analytic solutions
of ordinary stochastic differential equations are more difficult to obtain than in the deterministic case. Thus, the theory of
stochastic numerical integration has almost simultaneously been developed. The first developed numericalmethods for SDE
were stochastic extensions of deterministic algorithms like the schemes of: Euler–Maruyama, Taylor, Runge–Kutta, [4–6].
Nevertheless, newmethods have been derived according to the structural or dynamic properties of the SDE. Some examples
are the balanced methods for stiff SDE [7] or quasi-symplectic methods for stochastic Hamiltonian systems [8].

Stochastic numerical models may facilitate the analysis of some properties that are difficult or impossible to measure
experimentally in laboratories as well as to simulate their asymptotic behavior. In these cases, harsh dynamic stability prop-
erties are required such as the asymptotic stability in mean and mean-square. In the last decade, several works related to
linear stability for the most common methods for SDE have been published [9–11]. A linear analysis can be considered as
a first step for understanding the method, but it is not an indicator of the qualitative behavior of the method in a nonlinear
case [12]. Thus, some theoretical work on asymptotic stability has appeared for nonlinear SDE with multiplicative noise by
Bokor [4] andwith additive noise by Buckwar et al. [13]. Since, most popular schemes are stochastic extensions of the deter-
ministic counterpart, sometimes their asymptotic stability conditions are very restrictive. Consider for example in Brownian
dynamics simulationswhere a classical Euler discretization, CBDmethod, is the standardmethod to solve the Langevin equa-
tion [14–16]. The step size of the time integration for the CBD method has to be pint-size, otherwise the scheme becomes
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unstable. Another example with stability challenges is in the numerical approximation of the logistic SDE, since it requires
implicit approximations with somemonotone properties [17]. In this work, we focus on the following stochastic differential
equation

dXt = F(t, Xt)dt + G(t, Xt)dBt , X0 = x0 (1)

considering the drift term as F(t, Xt) = F1(t)F2(Xt). The vast majority of phenomena are modeled with an autonomous de-
terministic term, so this formulation of F is not too restrictive. Given this functional form of F , we propose an exact explicit
algorithm for solving the deterministic equation linked to (1); details of this exact differentiation are given in [18]. So, the
main characteristic of this newmethod is that it preserves qualitative features of the deterministic solution associated to the
SDE. Next, we prove strong consistency, convergence and study the linear stability of the proposedmethod using properties
of the Steklov mean [19]. Moreover, we analyze the nonlinear stability of the Steklov stochastic approximation specifically
the asymptotic mean-square stability in the multiplicative case and the path-wise stability in the additive case. Finally, we
show the efficiency of the new scheme in numerical problemswith harsh requirements of stability like the logistic equation
for the multiplicative case and the Langevin equation with a particular potential for the additive case.

This paper is organized as follows: In Section 2, we construct the explicit Steklov method for the SDE (1) and show its
development with some examples. In the next section, we prove strong consistency and convergence of the new explicit
method. In Section 4, sufficient conditions for the asymptotic mean and mean-square stability are given for both additive
andmultiplicative cases. A nonlinear stability analysis is carried out in Section 6,wherewe prove that the explicit Steklov ap-
proximation is asymptotically stable in squaremean sense in themultiplicative case and it is path-wise stable under certain
conditions in the additive case. In Section 7, we test the Steklovmethod for the stochastic logistic equation in themultiplica-
tive case and for the Langevin equation in Brownian dynamics. Also, we show numerical evidence that the Steklov method
is successful with step sizes significantly large reaching larger time scales of simulation. Finally, we give some conclusions.

2. Steklov method

Let (Ω, F , (Ft)t∈[0,T ], P) a filtered and complete probability space with the filtration (Ft)t∈[0,T ] generated by the Brown-
ian process Bt . Then the one-dimensional SDE (1) with constant initial condition has a unique solution if F and G are globally
Lipschitz-continuous functions satisfying the following linear growth conditions for a positive constantM:

|F(x, t)| ≤ M(1 + |x| + |t|), |G(x, t)| ≤ M(1 + |x| + |t|),

for all x ∈ R and t ∈ [0, T ], see [6]. Under these considerations we construct the Steklov numerical scheme for the SDE (1)
based on its integral formulation:

Xt = X0 +

 t

0
F(s, Xs)ds +

 t

0
G(s, Xs)dBs, t ∈ [0, T ], X0 = x0, (2)

where Xt denotes the value of the process at time t with initial value X0. First we discretize the time domain with a uniform
step size h such that tn = nh for n = 0, 1, 2, . . . ,N and denote by Yn the numerical solution at tn. Now we approximate the
stochastic integral of (2) with the usual form: tn+1

tn
G(s, Xs)dBs ≈ G(tn, Yn)1Bn, 1Bn := (Btn+1 − Btn) =

√
hVn, (3)

where Btn+1 −Btn is a discrete standard Brownianmotion such that Vn ∼ N (0, 1). We can obtain different schemes depend-
ing on the numerical integration used for the first integral of (2). For example, if we choose Euler’s approximation: tn+1

tn
F(s, Xs)ds ≈ F(tn, Yn)(tn+1 − tn), (4)

then we obtain the Euler–Maruyama scheme as follows:

Yn+1 = Yn + F(tn, Yn)h + G(tn, Yn)1Bn, n = 1, . . . ,N − 1, Y0 = x0. (5)

Assuming that we can rewrite the function F as F(t, Xt) = F1(t)F2(Xt), we propose an alternative approach to (4) based on
the construction of an exact discretization for the deterministic differential equation associated to (1):

dx
dt

= F1(t)F2(x), x(0) = x0. (6)

Integrating this equation in the interval [tn, tn+1) and using the Steklov mean [18], we have tn+1

tn
F1(s)F2(x)ds ≈ φ1(tn)φ2(yn, yn+1)(tn+1 − tn), (7)

where

φ1(tn) =
1

tn+1 − tn

 tn+1

tn
F1(s)ds and φ2(yn, yn+1) =


1

yn+1 − yn

 yn+1

yn

du
F2(u)

−1

.
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