
Journal of Computational and Applied Mathematics 291 (2016) 422–431

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Constructing positive reliable numerical solution for
American call options: A new front-fixing approach
R. Company, V.N. Egorova ∗, L. Jódar
Instituto de Matemática Multidisciplinar, Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain

a r t i c l e i n f o

Article history:
Received 27 May 2014
Received in revised form 2 September 2014

Keywords:
American call option pricing
Finite difference scheme
Front-fixing transformation
Numerical analysis
Positivity

a b s t r a c t

A new front-fixing transformation is applied to the Black–Scholes equation for the
American call option pricing problem. The transformed non-linear problem involves
homogeneous boundary conditions independent of the free boundary. The numerical
solution by an explicit finite-difference method is positive and monotone. Stability and
consistency of the scheme are studied. The explicit proposed method is compared with
other competitive implicit ones from the points of view accuracy and computational cost.
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1. Introduction

Free boundary problems appear in plasma physics, semiconductors, financial markets and other fields [1–3]. The free
boundary has to be determined as a part of the solution. Crank in [2] systematized the knowledge about moving and free
boundary problems and presented a front-fixing method for such problems. The method is based on Landau’s transform [4]
that let the unknown boundary be included into equation in exchange for a fixed boundary.

American option pricing leads to the free boundary problem [5].Wu andKwok in [6] introduced a logarithmic front-fixing
transformation for solving such problems to the field of option pricing. Recently this technique has been treated in [7–9].
Another transformation related to a synthetic portfolio is presented in [10,11] involving the first spatial derivative of the
option price. The transformed equation can be numerically solved by a finite element method (see [12]).

In this paper we introduce a new front-fixing transformation for American call option on dividend-paying assets. Under
this transformation a nonlinear PDE with homogeneous boundary conditions independent of the free boundary is obtained.
This fact simplifies the numerical analysis of the finite difference scheme. The proposed explicit finite difference scheme
preserves theoretical properties of the solution mentioned in [13]. Dealing with prices it is important to guarantee that the
proposed numerical solutions be non-negative. Our scheme guarantees this property as well as monotonicity of the free
boundary and the option price. Numerical experiments show that the method is efficient and accurate in comparison with
other implicit methods.

The paper is organized as follows. In Section 2 we introduce a new front-fixing transformation for the American call
option problem and an explicit finite difference scheme is constructed. In Section 3 we study properties of the numerical
solution, such as the non-negativity andmonotonicity of the option price, increasingmonotonicity and concave behaviour of
the optimal exercise boundary. In Section 4 stability and consistency are treated. In last section we present implicit scheme
and compare proposed method with other approaches as well as illustrate efficiency and convergence of the method.

Throughout the paper we will denote for a given x = [x1, x2, . . . , xN ]
T

∈ RN its supremum norm as ∥x∥∞ = max{|xi| :

1 ≤ i ≤ N}.
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2. Front-fixing method

In this section we introduce a new front-fixing transformation similar to the ones used by [6,10,5]. This transformation
translate themoving domain to the fixed one and changes the boundary conditions on the left boundary to the homogeneous
ones. It allows to apply finite-difference method for the numerical solution. The discretization of the transformed problem
and constructing the explicit finite-difference method are presented in this section.

American call option price model is given by [5] as the moving free boundary PDE

∂C
∂τ

=
1
2
σ 2S2

∂2C
∂S2

+ (r − q)S
∂C
∂S

− rC, 0 < S < B(τ ), 0 < τ ≤ T , (2.1)

together with the boundary and initial conditions
C(S, 0) = max(S − E, 0), (2.2)
∂C
∂S

(B(τ ), τ ) = 1, (2.3)

C(B(τ ), τ ) = B(τ ) − E, (2.4)
C(0, τ ) = 0, (2.5)

B(0) =


E, r ≤ q,
r
q
E, r > q (2.6)

where τ = T − t denotes the time to maturity T , S is the asset’s price, C(S, τ ) is the option price, B(τ ) is the unknown early
exercise boundary, σ is the volatility of the asset, r is the risk free interest rate, q is the continuous dividend yield and E is
the strike price.

It is well known that if there is no dividend payment (q = 0), then the optimal strategy is to exercise option at the
maturity (see [5, Chapter 7.7], [14]). In that case the American call becomes European one. Because of that we consider
problem (2.1)–(2.6) with q > 0 [14].

Let us consider the dimensionless transformation with two targets: to fix the computational domain as in [6] and to
simplify the boundary conditions like [5, p. 122],

x = ln
B(τ )

S
, c(x, τ ) =

C(S, τ ) − S + E
E

, Sf (τ ) =
B(τ )

E
. (2.7)

Under transformation (2.7) the problem (2.1)–(2.6) can be rewritten in normalized form

∂c
∂τ

=
σ 2

2
∂2c
∂x2

−


r − q −

σ 2

2
+

S ′

f

Sf


∂c
∂x

− rc − qSf e−x
+ r, x > 0, 0 < τ ≤ T , (2.8)

with new initial and boundary conditions

c(x, 0) =


1 − e−x, r ≤ q,
g(x), r > q, x ≥ 0, (2.9)

g(x) = max

1 −

r
q
e−x, 0


, (2.10)

∂c
∂x

(0, τ ) = 0, (2.11)

c(0, τ ) = 0, (2.12)
lim
x→∞

c(x, τ ) = 1, (2.13)

Sf (0) =


1, r ≤ q,
r
q
, r > q. (2.14)

Following the ideas of [6,3] and in order to solve the numerical difficulties derived from the discretization at the numerical
boundary, we assume that (2.8) holds true at x = 0,

σ 2

2
∂2c
∂x2

(0+, τ ) − qSf (τ ) + r = 0. (2.15)

Equation (2.8) is a non-linear differential equation on the domain (0, ∞)× (0, T ]. In order to solve numerically problem
(2.8)–(2.14) at the point (x, τ ) in the domain (0, ∞) × (0, T ], one has to consider a bounded numerical domain. Let us
introduce xmax large enough to translate the boundary condition (2.13). Then the problem (2.8)–(2.14) can be numerically
studied on the fixed domain [0, xmax] × [0, τ ]. The value xmax is chosen following the criterion pointed out in [15].
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