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a b s t r a c t

In this paper,we study the semidefinite inverse eigenvalue problemof reconstructing a real
n-by-n matrix C such that it is nearest to the original pre-estimated real n-by-n matrix Co
in the Frobenius norm and satisfies the measured partial eigendata, where the required
matrix C should preserve the symmetry, positive semidefiniteness, and the prescribed
entries of the pre-estimated matrix Co. We propose the alternating direction method of
multipliers for solving the semidefinite inverse eigenvalue problem, where three related
iterative algorithms are presented.We also extend ourmethod to the case of lower bounds.
Numerical experiments are reported to illustrate the efficiency of the proposedmethod for
solving semidefinite inverse eigenvalue problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following semidefinite inverse eigenvalue problem with prescribed entries and partial eigendata:
PESDIEP.Given a pre-estimated real symmetric and positive definitematrix Co ∈ Rn×n and a set ofmeasured eigendata {(λk, xk) ∈

R × Rn
}
p
k=1(p ≪ n), find a matrix C ∈ Rn×n such that it is closest to the original matrix Co in the Frobenius norm, satisfies the

measured eigendata {(λk, xk)}
p
k=1, and retains the symmetry, positive semidefiniteness and prescribed entries {(Co)ij | (i, j) ∈ Is}

of the pre-estimatedmatrix Co,where Is ⊂ N := {(i, j) | i, j = 1, . . . , n} is a given index subset such that (j, i) ∈ Is if (i, j) ∈ Is.
The PESDIEP is a kind of structured inverse eigenvalue problems, which arise in many applications such as structural

dynamics, vibrations, control design, circuit theory, inverse Sturm–Liouville problems, applied physics, finite elementmodel
updating, etc. For the applications,mathematical theory, and numericalmethods on structured inverse eigenvalue problems,
one may refer to, for instance, the survey papers [1,2] and the books [3–6] and references therein.

The PESDIEP plays an important role in many applications such as the finite element model updating in structural
dynamics andvibration [3–5,7,8]. In practice, the pre-estimated analyticmatrixCo is a physicalmatrixwhose entries involves
some physical parameters such as mass, stiffness, length, elasticity, inductance, capacitance, etc. In general, the physical
analytical matrix Co possesses some specific structural constraints (e.g., symmetry, definiteness, sparsity or bandedness).
However, the natural frequencies and mode shapes (i.e., eigenvalues of eigenvectors) predicted by the analytic matrix Co
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often do notmatchwith experimentallymeasured frequencies andmode shapes. To ensure the validity of the originalmodel,
one may update or correct the original analytic matrix Co via the prescribed partial eigendata, which can be experimentally
measured fromapractical structure. It is desired to update the originalmatrixCo withminimal changes. This requires that the
updated matrix C should be closest to the original analytic matrix Co, say, in the Frobenius norm and satisfies the measured
eigendata. More importantly, the updated matrix C should preserve various structural constraints of Co simultaneously.
That is, the corrected matrix C should keep the symmetry, definiteness, and sparsity (i.e., prescribed entries) of the analytic
matrices Co unchanged.

Let

Λ = diag(λ1, . . . , λp) ∈ Rp×p, X = [x1, . . . , xp] ∈ Rn×p.

Then, the PESDIEP is to solve the following minimization problem.

min
1
2
∥C − Co∥

2

subject to (s.t.) CX = XΛ,
Cij = (Co)ij ∀(i, j) ∈ Is,
C ∈ Sn

+
,

(1)

where ∥ · ∥ denotes the Frobenius matrix norm or the Euclidean vector norm and Sn and Sn
+
denote the set of all n × n real

symmetric matrices and the set of all n×n real symmetric and positive semidefinitematrices, respectively.Without causing
any confusion, we regard the minimization problem (1) as the PESDIEP.

As noted in [9], onemay find a solution to the PESDIEP (1) by using classical semidefinite programming (SDP) techniques
(see for instance [10–12]). However, the primal–dual interior-point methods may not be effective for solving large-scale
semidefinite programming problems [12]. In many applications, the problem size of the PESDIEP is very large (say, n ≥

1000). In this case, the number np of linear constraints in the PESDIEP (1) is much large even when the number p of given
eigenpairs is small (e.g., when n ≥ 1000 and p = 30, np ≥ 30, 000). By dropping the requirement of partial entries (i.e.,
Cij = (Co)ij ∀(i, j) ∈ Is), one may solve the simplified version of PESDIEP (1) by the semismooth Newton method proposed
in [13,14]. But the requirement of prescribed entries is vital for practical applications, e.g., it is essential to preserve the
sparsity of the original physical matrix Co. In this case, the number |Is| of prescribed entries is very large.

Recently, the alternating direction method of multipliers (ADMM), which is proposed by Glowinski and Marrocco [15],
has been used in many areas: optimization, image processing and statistical learning, etc. One may refer to the survey
paper [16] and references therein for the applications of the ADMM. In this paper, we propose several iterative algorithms
based on the ADMM for solving the PESDIEP. This is motivated by the recent papers due to He, Xu, and Yuan [17] and Zhao,
Bai, and Chen [18]. In [17], He, Xu, and Yuan introduced an ADMM for solving large-scale semidefinite programming. In [18],
the ADMM is successfully applied to nonnegative inverse eigenvalue problemswith partial eigendata.We shall present three
ADMM-based iterative algorithms for solving the PESDIEP by adding two auxiliary matrix variables so that the resulted two
subproblems can be handled easily, where one of the subproblems has closed-form solution and the other is a quadratic
minimization problem which can be solved efficiently by solving its dual problem. We also extend the proposed method
to the case of lower bounds. We report some numerical tests, including the comparison with the interior-point approach
mentioned in [9,12] for solving the PESDIEP, to illustrate the effectiveness of our method.

Throughout the paper, we use the following notations. The symbol AT denotes the transpose of amatrix A. I is the identity
matrix of an appropriate dimension. Let ∥ · ∥max denote the entry of largest absolute value of a matrix. Let D ⊆ Rn×n (or Sn)
be a closed convex set and ΠD{·} denote the metric projection onto D .

The remaining part of the paper is organized as follows. In Section 2wepropose several ADMM-based iterative algorithms
for solving the PESDIEP. In Section 3 we discuss some extensions. In Section 4 we report some numerical tests.

2. An alternating direction method of multipliers

2.1. Problem reformulation

Let Sn be equipped with the Frobenius inner product

⟨A, B⟩ = tr(AB) ∀A, B ∈ Sn,

where ‘‘tr’’ means the trace of a matrix. To apply the ADMM to the PESDIEP, one possible way is to rewrite the PESDIEP (1)
in the following form:

min
1
2
∥C − Co∥

2
+

1
2
∥Y − Co∥

2

s.t. C − Y = 0,
C ∈ Sn

+
, Y ∈ SB,

(2)

where SB := {Y ∈ Sn
| YX = XΛ, Yij = (Co)ij ∀(i, j) ∈ Is}.
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