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This paper focuses on a linearized fully discrete projection scheme for time-dependent 
magnetohydrodynamics equations in three-dimensional bounded domain. It is shown 
that the proposed projection scheme allows for a discrete energy inequality and is 
unconditionally stable. In addition, we present a rigorous analysis for the rates of 
convergence.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The incompressible magnetohydrodynamics (MHD) equations are used to describe the flow of a viscous, incompressible 
and electrically conducting fluid. For the understanding of the physical background of the MHD equations, we refer to 
Hughes [10] and Moreau [11]. Let � ⊂ R3 be a bounded and simply-connected domain which is either convex or has a C1,1

boundary ∂�. We consider the non-dimensional MHD equations in the primitive variable formulation

∂u

∂t
− 1

Re
�u + (u · ∇)u + ∇p + Sb × curl b = f, (1.1)

div u = 0, div b = 0, (1.2)

∂b

∂t
+ 1

Rm
curl (curl b) − curl (u × b) = 0, (1.3)

for x ∈ � and t ∈ (0, T ) with T > 0, where Re, Rm and S are three positive constants and denote the Reynolds number, 
the magnetic Reynolds number and the coupling number, respectively. The vector-value function f represents the body 
forces applied to the fluid. The MHD equations (1.1)–(1.3) couple the incompressible Navier–Stokes equations with Maxwell’s 
equations. Thus, the unknowns in (1.1)–(1.3) are the fluid velocity u, the pressure p and the magnetic field b. The MHD 
equations should be completed by the appropriate initial and boundary conditions. For the sake of simplicity, we consider 
the following initial and boundary conditions:
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u(x,0) = u0, b(x,0) = b0 in �, (1.4)

u = 0, b · n = 0, curl b × n = 0 on ∂� × [0, T ], (1.5)

where n denotes the unit outward normal vector on ∂�. The initial vector functions u0 and b0 satisfy the compatibility 
condition div u0 = 0 and div b0 = 0.

It was observed that testing (1.1) and (1.3) by u and Sb, respectively, and adding the resulting equations leads to the 
following energy identity:

1

2

d

dt

∫
�

(
|u|2 + S|b|2

)
dx +

∫
�

(
1

Re
|∇u|2 + S

Rm
|curl b|2

)
dx =

∫
�

f · udx ∀ t > 0.

Thus, for any prescribed initial data (u0, b0) ∈ L2(�) × L2(�), the MHD problem (1.1)–(1.5) exists the global weak solutions. 
On the regularities of the weak solutions, Sermange–Temam in [14] established the existences of local strong solution with 
large initial data and global strong solution with small initial data.

For the numerical analysis of the MHD problem, the mixed finite element approximations were first proposed and 
studied for the stationary MHD problem in [7], where H1-conforming elements were used to discretize the magnetic 
field provided that � is either convex or has a C1,1 boundary ∂�. Inspired by the absolutely stable methods for Stokes 
problem in [3], a stabilized mixed finite element method for stationary MHD problem was developed by Gerbeau [4]. 
For the time-dependent MHD equations (1.1)–(1.3), recently, He proposed a linearized semi-implicit Euler scheme in [8], 
where L2-unconditional convergence of this scheme was proved by using the negative norm technique. Other fully discrete 
Crank–Nicolson schemes were studied in [19,20]. For the non-convex domain or Lipschitz polyhedra domain of engineering 
practice, the magnetic field b may have regularity below H1(�). In this case, the H1-conforming finite element discretiza-
tion for b, albeit stable, may not converge to corresponding magnetic field. A mixed finite element formulation based on 
H(curl)-elements (or Nédélec elements) for b was proposed and studied by Schötzau in [13] for the stationary MHD prob-
lem. For a review of various numerical methods for the MHD equations, we refer to Gerbeau–Bris–Lelièvre [5].

In the present work, we will consider the three-dimensional time-dependent MHD equations (1.1)–(1.3) with the initial 
and boundary conditions (1.4) and (1.5), and propose a linearized fully discrete scheme based on a modified Chorin’s projec-
tion scheme for Navier–Stokes equations in [15]. The projection methods were first proposed by Chorin [2] and Temam [17], 
and have been further developed in various directions. The main advantage of the projection methods is first to compute a 
velocity field without taking into account incompressibility, and then perform a pressure correction, which is a projection 
back to the subspace of solenoidal (divergence-free) vector fields. For a review of projection methods for the Navier–Stokes 
equations, we refer to [6]. To state our main results derived in this paper, we recall the following terminology [15]:

Definition 1.1. Let X be a Banach space equipped with norm || · ||X and f : [0, T ] −→ X is continuous. Let 0 = t0 < t1 <

· · · < tN = T be a uniform partition of the time interval [0, T ] with time step �t = T /N and tn = n�t for 0 ≤ n ≤ N . We say 
f�t is a weakly order α approximation of f in X if there exists a constant C independent of �t such that

�t
N∑

n=0

|| f�t(tn) − f (tn)||2X ≤ C(�t)2α;

and we say f�t is a strongly order α approximation of f in X if there exists a constant C independent of �t and n such 
that

max
0≤n≤N

|| f�t(tn) − f (tn)||2X ≤ C(�t)2α.

To our best knowledge, Prohl in [12] first proposed a projection scheme for the MHD problem. Unfortunately, the pro-
jection scheme in [12] does not allow for a discrete energy estimate. Moreover, it was proved that this scheme provided 
the weakly order 1

2 approximations of the velocity field and the magnetic field in H1(�). In this paper, we propose a new 
linearized projection scheme, which allows for a discrete energy inequality, thus, and is unconditionally stable. We will 
prove that this new projection scheme provides the weakly first-order approximations of the velocity field and the mag-
netic field in H1(�), and the strongly first-order approximations of the velocity field and the magnetic field in L2(�) under 
the regularity Assumptions 1 and 2 below. To obtain the optimal convergence order of the pressure, we need some further 
regularity assumption as like in [16], under which we can derive the weakly first-order approximation of the pressure in 
L2(�).

This paper is organized as follows: in the next section, we begin with some notation and lay out some regularity as-
sumptions and recall some known inequalities frequently used. The new linearized projection scheme and the main results 
are presented in Section 3. Meanwhile, the discrete energy inequality is derived in Section 3. The proofs of main results are 
given in Sections 4 and 5, which are split into several theorems.
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