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We propose several approximate Gauss–Newton methods, i.e., the truncated, perturbed, 
and truncated-perturbed GN methods, for solving underdetermined nonlinear least squares 
problems. Under the assumption that the Fréchet derivatives are Lipschitz continuous and 
of full row rank, Kantorovich-type convergence criteria of the truncated GN method are 
established and local convergence theorems are presented with the radii of convergence 
balls obtained. As consequences of the convergence results for the truncated GN method, 
convergence theorems of the perturbed and truncated-perturbed GN methods are also 
presented. Finally, numerical experiments are presented where the comparisons with the 
standard inexact Gauss–Newton method and the inexact trust-region method for bound-
constrained least squares problems [23] are made.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let D be an open set and f : D ⊆ R
n → R

m be a nonlinear operator with the continuous Fréchet derivative denoted by 
f ′ . Let φ : D ⊆R

n →R be defined by

φ(x) := 1

2
f (x)T f (x), for each x ∈ D.
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The nonlinear least squares problem (NLSP) of f is defined by

min
x∈D

φ(x). (1.1)

The NLSP (1.1) arises most commonly from data-fitting applications [3,8,14]. This model is particularly useful in the formu-
lation of a parameterized system in which a chemical, physical, financial, or economic application could use the function φ
to measure the discrepancy between the model and the output of the system at various observation points. By minimizing 
the function φ, they select the parameter values which best match the model to the data [2,21].

Note that finding the stationary points of φ is equivalent to solving the nonlinear gradient equation

∇φ(x) := f ′(x)T f (x) = 0. (1.2)

Based on this equivalence, Newton’s method for solving nonlinear equation (1.2) can be applied to solving NLSP (1.1) (cf. 
[13]). However, Newton’s method for solving (1.2) requires the computation of the Hessian matrix of φ at each iteration xk:

∇2φ(xk) := f ′(xk)
T f ′(xk) + R(xk), (1.3)

where R(xk) is the second order term which may be difficult to obtain especially for large scale problems [9]. In order 
to make the procedure more efficient, Newton’s method could be approximated by ignoring the second-order term in the 
Hessian matrix (1.3) and this yields the Gauss–Newton (GN) method. More precisely, the GN step dk is defined by the 
minimum norm solution of the following equation:

f ′(xk)
T f ′(xk)dk = − f ′(xk)

T f (xk). (1.4)

That is, in terms of f ′(xk)
†, the GN step dk is given by

dk := − f ′(xk)
† f (xk), (1.5)

where f ′(xk)
† represents the Moore–Penrose inverse of f ′(xk) (see section 2 for the definition). Many authors have studied 

the local as well as semi-local convergence of the GN method; see for example [6,11,12,16,21,22].
However, as expressed in (1.4), the GN method has the following two disadvantages from the point of view of practical 

calculation: (a) it requires the computation of the Fréchet derivative f ′(xk) at each outer iteration; (b) it requires solving the 
equation (1.4) exactly at each outer iteration. This sometimes makes the GN method inefficient especially when the problem 
size is large. Noting these two disadvantages, Gratton et al. designed in [9] some approximate GN methods for solving the 
NLSP (1.1) with m ≥ n. To overcome the disadvantage in (a), the perturbed GN method was proposed in [9] where the 
Fréchet derivative f ′(xk) was replaced by a perturbed Fréchet derivative Jk which is much easier or computationally less 
expensive to calculate. More precisely, the perturbed GN method finds the step dk such that

J T
k Jkdk = − J T

k f (xk). (1.6)

As for the drawback in (b), a natural approach is to solve the equation (1.4) inexactly instead of exactly and this yields the 
truncated GN method proposed in [9]. For the residual rk and the iteration xk , the truncated GN method finds the step dk
such that

f ′(xk)
T f ′(xk)dk = − f ′(xk)

T f (xk) + rk. (1.7)

The third approximate GN method designed in [9] is the truncated-perturbed GN method which avoids both disadvantages 
in (a) and (b) and, for the residual rk and the iteration xk , finds the step dk such that

J T
k Jkdk = − J T

k f (xk) + rk.

Under the assumption that the (perturbed) Fréchet derivatives are of full column rank, the truncated, perturbed, and 
truncated-perturbed GN methods were proved to be convergent in [9]. However, in the case when m < n or without the 
full column rank assumption of the (perturbed) Fréchet derivatives, the sequences {xk} generated by these approximate GN 
methods are not convergent in general. For example, we consider the function f : R2 →R

1 defined by

f (x) := x(1)x(2), for each x = (x(1), x(2))T ∈ R
2.

Let x0 = (x(1)
0 , x(2)

0 )T be any point in R2. For each k ≥ 1, we define xk := (0, k!x(2)
0 )T . Then d0 = (−x(1)

0 , 0)T and dk =
(0, kk!x(2)

0 )T for each k ≥ 1. Thus, one can check that the sequences {xk} and {dk} satisfy (1.7) with rk ≡ 0. This implies 
that {xk} is generated by the truncated GN method proposed in [9] (with rk ≡ 0). Obviously, {xk} doesn’t converge. (Note 
that in the case when each rk ≡ 0 and each search direction dk is chosen to be the minimum norm solution of (1.7), the 
approximate GN method is reduced to the GN method; hence, {xk} is convergent.)

The purpose of this paper is, in the case when m ≤ n (i.e., the NLSP (1.1) is underdetermined), trying to propose some 
approximate GN methods for solving the NLSP (1.1) and study the convergence of the proposed method under the full row 
rank assumption. For this purpose, note that, in the case when f ′(xk) is of full row rank, f ′(xk)

† = f ′(xk)
T ( f ′(xk) f ′(xk)

T )−1

(see section 2 for details) and thus, solving (1.5) is equivalent to solving the equation
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