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In this paper, we propose a new time splitting Fourier spectral method for the semi-
classical Schrödinger equation with vector potentials. Compared with the results in [21], 
our method achieves spectral accuracy in space by interpolating the Fourier series via the 
NonUniform Fast Fourier Transform (NUFFT) algorithm in the convection step. The NUFFT 
algorithm helps maintain high spatial accuracy of Fourier method, and at the same time 
improve the efficiency from O (N2) (of direct computation) to O (N log N) operations, where 
N is the total number of grid points. The kinetic step and potential step are solved by 
analytical solution with pseudo-spectral approximation, and, therefore, we obtain spectral 
accuracy in space for the whole method. We prove that the method is unconditionally 
stable, and we show improved error estimates for both the wave function and physical 
observables, which agree with the results in [3] for vanishing potential cases and are 
superior to those in [21]. Extensive one and two dimensional numerical studies are 
presented to verify the properties of the proposed method, and simulations of 3D problems 
are demonstrated to show its potential for future practical applications.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Quantum effects play a significant role in many scientific and engineering areas, such as theoretical chemistry, solid-state 
mechanics and quantum optics, and the mathematical analysis and numerical simulation of Schrödinger equations are of 
fundamental importance. This type of equations form a canonical class of dispersive PDEs, i.e., equations where waves 
of different wavelengths propagate at different phase velocities. Whenever the magnetic field is considered, we need to 
incorporate the vector potentials in the Schrödinger equation.
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In this paper, we consider the semi-classical Schrödinger equation with vector potentials, which has the form

iε∂t uε = 1

2
(−iε∇x − A(x))2 uε + V (x)uε, t ∈R

+, x ∈R
3, (1.1)

uε(x,0) = u0(x), x ∈R
3, (1.2)

where uε(x, t) is the complex-valued wave function, V (x) ∈ R is the scalar potential and A(x) ∈ R
3 is the vector potential. 

The scalar potential and the vector potential are introduced to mathematically describe the electromagnetic field, i.e., the 
electric field E(x) ∈R

3 and the magnetic field B(x) ∈ R
3 given as follows

E = −∇V (x), B = ∇ × A (x) . (1.3)

The Schrödinger equation (1.1) above can be derived from the equation in the absence of the vector potential by local 
gauge transformation (see [28]). The quantum dynamics in the presence of the external electromagnetic field results in 
many far-reaching consequences in quantum mechanics, such as Landau levels, Zeeman effect and superconductivity. In the 
aspect of analysis, the Hamiltonian has different features in spectral and scattering properties (see [1]). Numerically, it gives 
new challenges as well, especially in the semi-classical regime. The presence of the vector potential introduces a convection 
term in the Schrödinger equation and in the meanwhile effectively modifies the scalar potential (see [21]).

In fact, one can simplify the potential description by imposing one more condition, namely, specifying the gauge. The 
electric field E(x) ∈ R

3 and magnetic field B(x) ∈ R
3 stay invariant in different gauges. One natural choice is, ∇x · A = 0, 

which is the so-called Coulomb gauge. In this gauge, the vector potential and the canonical momentum operator commute, 
[A, −iε∇x] = 0, so that the modified “kinetic” part of the Schrödinger equation (1.1) can be simplified as follows

1

2
(−iε∇x − A)2uε = −ε2

2
�xuε + iεA · ∇xuε + 1

2
|A|2uε. (1.4)

In the Schrödinger equation, the wave function acts as an auxiliary quantity used to compute macroscopic physical 
quantities (physical observables) such as the position density

n(x, t) = |uε(x, t)|2, (1.5)

and the modified current density

J(x, t) = 1

2

(
uε (−iε∇x − A) uε − uε (−iε∇x − A) uε

)
, (1.6)

where f̄ denotes the complex conjugate of f . Actually, we have the following mass conservation equation

∂

∂t
n + ∇x · J = 0. (1.7)

We remark that n and J are gauge invariant quantities. Another two important physical quantities are the mass

m(t) := ‖uε(x, t)‖2
L2 =

∫
R3

n(t, x)dx, (1.8)

and the energy

E(t) := 1

2
‖(−iε∇ − A)uε‖2

L2 + 〈uε, V uε〉, (1.9)

where 〈 f , g〉 ≡ ∫
Rd f (x)g(x)dx is the standard inner product. For uε ∈ C(Rt; L2(Rd) ∩S(Rd)), these quantities are conserved 

through dynamics. We refer the readers to appendixes for detailed proofs.
In the semi-classical regime, namely ε 
 1, the wave function uε is highly oscillatory both in space and time on the 

scale O (ε), therefore it does not converge in the strong sense as ε → 0. When ε 
 1, several approximate methods other 
than directly solving the Schrödinger equation have been proposed, such as the level set method and the moment closure 
method based on the WKB analysis and the Wigner transform, see, for example, [9,18,16,17]. The Gaussian beam method 
(or the Gaussian wave packet approach) is another important one, which allows accurate computation around caustics and 
captures phase information (see, for example, [14,23,25,19,24,32]) with O (ε1/2) model error. To improve the approximation 
accuracy, higher order Gaussian beam methods were introduced with an error Ck(T )εk/2 (see [31,20]). However, it has been 
shown in [22,33] that, for fixed ε, higher order Gaussian beam methods may not be a practical way to reduce the error. 
Whereas, the Hagedorn wave packets, studied by Hagedorn [13], analyzed and implemented as a computational tool in [13,
11,33,10], can effectively reduce the error for all ε ∈ (0, 1]. In [33], Zhou has extended this method to the vector potential 
case and provided a rigorous proof for the higher order convergence with the Galerkin approximation. Recently, Russo and 
Smereka in [26,27] proposed a new approach based on the so-called Gaussian Wave packet transform, which is another 
worthy alternative.
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