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A new adaptive moving least squares (MLS) method with variable radius of influence is 
presented to improve the accuracy of Meshless Local Petrov–Galerkin (MLPG) methods and 
to minimize the computational cost for the numerical solution of singularly perturbed 
boundary value problems. An error indicator based on a posteriori error estimation, 
accurately captures the regions of the domain with insufficient resolution and adaptively 
determines the new nodes location. The effectiveness of the new method is demonstrated 
on some singularly perturbed problems involving boundary layers.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Adaptive numerical methods are essential tools to improve the accuracy of numerical approximations to many important 
physical problems. These techniques have become increasingly important because of their great capacity for localizing when 
the total accuracy of numerical methods destroys due to interior or boundary layers, local singularities arisen from re-entrant 
corners and sharp moving fronts [6]. Although adaptive finite element techniques have achieved great success, they have 
faced difficulties with large mesh distortion when dealing with large deformation problems [26,28].

In the last few decades, a new class of numerical methods, meshless methods, has been developed to overcome or at 
least to reduce the complexity and the computational cost of meshing the complex structural domains [21–23,29]. Mesh-
less methods are generally formulated based on a set of scattered nodes. This significant feature also simplifies meshless 
methods to equip with adaptive techniques to perform adaptive analysis, because the nodes can be removed or inserted 
easily.

Meshless local Petrov–Galerkin method proposed by Atluri and Zhu [4], is one of the most frequently utilized and de-
veloped meshless methods. It is a truly meshless method which is based on a set of local weak forms, rather than a single 
global weak form. All integrations are always performed over regularly shaped and overlapping sub-domains � j that cover 
the problem domain �. Therefore no background cells are required in either the approximation or the integration.
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This method is believed to have a good future due to its general form of test and trial functions. Most of the meshless 
methods can be derived from it, as special cases, based on which of the possible trial and test functions or integration 
method are chosen. The most frequently used trial and test functions are MLS, radial basis functions (RBFs), partition of 
unity (PU) and Shepard function [1].

As Atluri and Shen classified in [1], based on the concept of the MLPG, the test functions over each local � j can be 
chosen through a variety of ways. The test function over � j can be the same as the weight function in the MLS approxi-
mation (MLPG1), collocation Dirac’s Delta function over � j (MLPG2), discrete least squares error function in the differential 
equation (MLPG3), the modified fundamental solution to the differential equation (MLPG4), the Heaviside step function over 
� j (MLPG5), and the test function can be the same as the trial function, i.e. the Galerkin method (MLPG6) [1]. MLPG2 
method is also called the finite point method (FPM) [35] when moving least squares approximation is applied as the trial 
function. Also MLPG4 is called Local Boundary Integral Equation (LBIE) [45]. The standard MLPG formulation relying on MLS 
approximation can be seen in some references, [1–3,8–11,32,43–46,48,49].

Recently, a new MLPG method has been proposed, called direct MLPG or DMLPG [33], based on the generalized moving 
least squares approximation [34]. In contrast to the MLPG method, GMLS directly recovers the test functionals directly 
from values at nodes. This follows the main feature of meshless methods to express all the values in terms of nodes [33]. 
This leads to a less costly scheme which shifts the local integrations over low-degree polynomials instead of complicated 
shape functions. In the other words, MLPG generalizes finite element methods, while DMLPG generalizes finite difference 
techniques. We refer the interested reader to [33,38,47] for more details on analysis and implementation of this method.

Since meshless methods are based generally on a set of quasi-regular approximation nodes to define the basis functions, 
locally refining and coarsening nodes are straightforward for these methods [13]. In the recent years several researchers 
have introduced several adaptive RBF schemes for both time-independent and time-dependent problems. Schaback and 
Wendland [41] and Hon et al. [17] proposed adaptive methods based on a greedy algorithm and best n-term approximation 
using compactly supported RBFs for interpolation and collocation problems. Authors of [17] introduced an indicator based 
on the weak formulation of the governing equation to adaptively re-allocate more RBF approximation points to the boundary 
layer. Ling and Trummer [27] developed a robust adaptive scheme based on a multiquadric integral formulation to solve 
problems with extremely thin boundary layers.

In [40] Sarra applied a modification of a simple moving grid algorithm, which was developed for use with low order 
finite difference method, to RBF methods for solving time dependent PDEs. The method is essentially the method of lines 
with RBFs implementation of the uniform distribution of arc length algorithm in space [40]. Driscoll and Heryudono in 
[13], proposed a new method for adaptive RBF based on residual subsampling for radial basis function in interpolation and 
collocation problems.

Also several researches have been done on adaptive MLS and its application in surface reconstructions in computer 
graphics. Huang et al. [18,19] presented an adaptive algorithm based on the moving least squares methods (MLS) for non-
uniform sampled points fitting. Dey and Sun in [12] proposed a new variant of the MLS surface that considers local feature 
sizes in its formulation and guarantees using a non-uniform sampling density. They claim that the proposed method can be 
used effectively to reconstruct surfaces from possibly noisy point cloud data [12]. Pudjisuryadi [36] presented an adaptive 
MLPG method using Lagrange interpolation functions as test functions with polygonal sub-domains constructed from several 
triangular patches rather than the typically used circular sub-domains.

The purpose of this paper is to present a new adaptive MLS approximation and extend it to the adaptive MLPG method. 
The adaptive MLS procedure, based on residual subsampling is explained in Section 2. We also demonstrate the effectiveness 
of this technique for approximation in 1D and 2D regions. In Section 3, an adaptive MLPG and a posteriori error estimation 
are proposed. We demonstrate that this method is capable of achieving high accuracy through the adaptivity for problems 
with boundary layers in Section 4. Finally, some concluding remarks are given in Section 5.

2. Adaptive MLS approximation

The moving least squares approximation was introduced by Shepard [42] in the late 1960s for constructing smooth 
approximations to fit a specified cloud of points. It was then extended in [24] for general surface generation problems. In 
what follows we briefly describe the concept of MLS approximation.

2.1. MLS approximation

The MLS approximation ũ : � →R of the function u : � →R is posed as a polynomial of order m but with non-constant 
coefficients. Let us begin with the problem of approximating a function u(x) in domain �, over a number of randomly 
located nodes {xi }, i = 1, 2, ..., N . The MLS approximation ũ : � →R of the function u : � →R is defined by

ũ(x) = pT (x)a(x), ∀x ∈ �̄, (2.1)

where pT (x) = (
p1(x), p2(x), ..., pl(x)

)
is the basis vector of polynomials of order m. For example in the two dimensional 

case, the basis function pT (x) is given by

Linear basis (m = 1, l = 3) pT (x) = (
1, x, y

)
,
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