H-kernels by walks in H-colored digraphs and the color-class digraph

Hortensia Galeana-Sánchez, Rocío Sánchez-López*
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Área de la investigación científica, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico

Received 12 January 2013; accepted 18 March 2016
Available online 25 June 2016

Abstract

Let H be a digraph possibly with loops and D a finite digraph without loops whose arcs are colored with the vertices of H (D is an H-colored digraph). $\mathrm{V}(D)$ and $\mathrm{A}(D)$ will denote the sets of vertices and arcs of D respectively. For an arc $\left(z_{1}, z_{2}\right)$ of D we will denote by $c_{D}\left(z_{1}, z_{2}\right)$ its color. A directed walk (respectively directed path) $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in D is an H-walk (respectively H-path) if and only if $\left(c_{D}\left(v_{1}, v_{2}\right), c_{D}\left(v_{2}, v_{3}\right), \ldots, c_{D}\left(v_{n-1}, v_{n}\right)\right)$ is a directed walk in H. A set $K \subseteq \mathrm{~V}(D)$ is an H-kernel by walks (respectively H-kernel) if for every pair of different vertices in K there is no H-walk (respectively H-path) between them, and for every vertex $u \in \mathrm{~V}(D) \backslash K$ there exists $v \in K$ such that there exists an H-walk (respectively H-path) from u to v in D.

Let D be an arc-colored digraph. The color-class digraph of D, denoted by $\mathscr{C}_{C}(D)$, is defined as follows: the vertices of the color-class digraph are the colors represented in the arcs of D and $\left.(i, j) \in \mathrm{A} \mathscr{C}_{C}(D)\right)$ if and only if there exist two arcs namely $(u, v) \in \mathrm{A}(D)$ colored i and $(v, w) \in \mathrm{A}(D)$ colored j. In this paper we relate the concepts discussed above, the color-class digraph and the H-coloration of D, in order to prove the existence of an H-kernel by walks (respectively H-kernel). © 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: H-kernel; Kernel; Kernel by monochromatic paths; Color-class digraph

1. Introduction

For general concepts we refer the reader to [1] and [2]. A directed walk is a sequence ($v_{1}, v_{2}, \ldots, v_{n}$) such that $\left(v_{i}, v_{i+1}\right) \in \mathrm{A}(D)$ for each $i \in\{1, \ldots, n-1\}$. Moreover if $v_{i} \neq v_{j}$ for $i \neq j,\{i, j\} \subseteq\{1, \ldots, n\}$, then it is called directed path. A directed cycle is a directed walk $\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$ such that $v_{i} \neq v_{j}$ for $i \neq j,\{i, j\} \subseteq\{1, \ldots, n\}$. If D is an infinite digraph, an infinite outward path is an infinite sequence (v_{1}, v_{2}, \ldots) of distinct vertices of D such that $\left(v_{i}, v_{i+1}\right) \in \mathrm{A}(D)$ for each $i \in N$. In this paper we are going to write walk, path, cycle instead of directed walk, directed path, directed cycle, respectively.

[^0]

D:

Fig. 1. $\{w\}$ is an H-kernel by walks of D and D has no H-kernel.
A digraph D is said to be arc-colored if its arcs are colored. A digraph D is said to be m-colored if the arcs of D are colored with m colors. Let D be an arc-colored digraph. A path is called monochromatic if all of its arcs are colored alike. For an arc $\left(z_{1}, z_{2}\right)$ of D we will denote by $c_{D}\left(z_{1}, z_{2}\right)$ its color.

In [3] Sands et al. proved that if the arcs of a finite tournament are colored with two colors, then there is always a single vertex reachable from any other by a monochromatic path. In [4] Linek and Sands gave an extension of the result of Sands et al. in which the arcs of a tournament T are colored with the elements of a partially ordered set P. They called a path $\left(v_{1}, \ldots, v_{n}\right)$ in T monotone if $c_{T}\left(v_{i}, v_{i+1}\right) \leq c_{T}\left(v_{i+1}, v_{i+2}\right)$ in P for each i. In [4] Linek and Sands considered a further extension as follows: if H is a reflexive digraph and T is a tournament whose arcs are colored by the vertices of H, an H-path W in T is a path in T for which $\left(c_{T}(u, v), c_{T}(v, w)\right) \in \mathrm{A}(H)$ for any two consecutive $\operatorname{arcs}(u, v)$ and (v, w) in W.

In [5] Arpin and Linek reconsidered the last extension suggested in [4] in order to assign a color to the arcs of a multidigraph D with the vertices of a digraph H (possibly irreflexive). They called a walk or a path ($v_{1}, v_{2}, \ldots, v_{n}$) in D an H-walk or an H-path, respectively, iff $\left(c_{D}\left(v_{1}, v_{2}\right), c_{D}\left(v_{2}, v_{3}\right), \ldots, c_{D}\left(v_{n-1}, v_{n}\right)\right)$ is a walk in H. Notice that an arc is an H-path, that is to say, a singleton vertex is a walk in H. They also called a set of vertices $S \subseteq \mathrm{~V}(D) H$ absorbent by walks if for every $x \in \mathrm{~V}(D) \backslash S$ there is an H-walk from x to some point of S and a set $I \subseteq \mathrm{~V}(D)$ was called H-independent by walks if there is no H-walk between any two distinct vertices of I. Since the existence of an H-walk between two vertices does not guarantee the existence of an H-path between those vertices (although for some H this is true) and the concatenation of two H-paths is not always an H-path, in [5] Arpin and Linek prefer to work with H-walks instead of H-paths. In [5] they classify \mathscr{B}_{2} (the class of all H such that any multidigraph D arc-colored with the vertices of H has an independent set of vertices that is H-absorbent by walks) and they make inroads in the classification of \mathscr{B}_{3} (the class of all H such that any multidigraph D arc-colored with the vertices of H has a set of vertices S that is both H-independent by walks and H-absorbent by walks) and \mathscr{B}_{1} (the class of all H such that any tournament arc-colored with the vertices of H has a single vertex H-absorbent by walks).

In [6] Galeana-Sánchez and Delgado-Escalante used the work of Arpin and Linek [5] in order to introduce the following concepts:

Definition 1.1. A subset N of $\mathrm{V}(D)$ is said to be an H-kernel by walks if it satisfies the following two conditions:

1. For every pair of different vertices in N there is no H-walk between them in D (N is H-independent by walks in D).
2. For every vertex y in $\mathrm{V}(D) \backslash N$ there is an H-walk from y to N in D (N is H-absorbent by walks in D).

Definition 1.2. A subset N of $\mathrm{V}(D)$ is said to be an H-kernel if it satisfies the following two conditions:

1. For every pair of different vertices in N there is no H-path between them in $D(N$ is H-independent in $D)$.
2. For every vertex y in $\mathrm{V}(D) \backslash N$ there is an H-path from y to a vertex in $N(N$ is H-absorbent in $D)$.

Since the existence of an H-walk between two vertices does not guarantee the existence of an H-path between those vertices and the concatenation of two H-paths is not always an H-path, we can claim that if D has an H-kernel by walks, then D not necessarily has an H-kernel as the example in Fig. 1 shows. In Fig. 1 we have that $\{w\}$ is an H-kernel by walks of D, because (u, v, z, v, w) is an H-walk in D that finishes in w and it contains every vertex of D. It is easy to check that D has no H-kernel (notice that every H-independent set of D has cardinality one).

We also claim that if D has an H-kernel, then D not necessarily has an H-kernel by walks as the example in Fig. 2 shows. In Fig. 2 we have that $\{u, x\}$ is an H-kernel in D. It is easy to see that D has no H-kernel by walks (notice

https://daneshyari.com/en/article/4646486

Download Persian Version:

https://daneshyari.com/article/4646486

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: hgaleana@matem.unam.mx (H. Galeana-Sánchez), usagitsukinomx @yahoo.com.mx (R. Sánchez-López).

