Graphs with vertex-coloring and detectable 2-edge-weighting

N. Paramaguru ${ }^{\text {a }}$, R. Sampathkumar ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Mathematics Wing, Directorate of Distance Education, Annamalai University, Annamalainagar 608 002, India
${ }^{\mathrm{b}}$ Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar 608 002, India

Received 20 December 2012; accepted 18 March 2016
Available online 29 June 2016

Abstract

For a connected graph G of order $|V(G)| \geq 3$ and a k-edge-weighting $c: E(G) \rightarrow\{1,2, \ldots, k\}$ of the edges of G, the code, $\operatorname{code}_{c}(v)$, of a vertex v of G is the ordered k-tuple $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$, where ℓ_{i} is the number of edges incident with v that are weighted i. (i) The k-edge-weighting c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-edge-weighting is the detectable chromatic number $\operatorname{det}(G)$ of G. (ii) The k-edge-weighting c is a vertex-coloring if every two adjacent vertices u, v of G with $\operatorname{codes} \operatorname{code}_{c}(u)=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$ and $\operatorname{code}_{c}(v)=\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}, \ldots, \ell_{k}^{\prime}\right)$ have $1 \ell_{1}+2 \ell_{2}+\cdots+k \ell_{k} \neq 1 \ell_{1}^{\prime}+2 \ell_{2}^{\prime}+\cdots+k \ell_{k}^{\prime}$. The minimum positive integer k for which G has a vertex-coloring k-edge-weighting is denoted by $\mu(G)$. In this paper, we have enlarged the known families of graphs with $\operatorname{det}(G)=\mu(G)=2$. © 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Detectable edge-weighting; Vertex-coloring edge-weighting; Cartesian product; Tensor product

1. Introduction

For graph-theoretical terminology and notation, we in general follow [1]. In this paper, we assume that the graphs G in discussion are finite, connected, undirected and simple with order $|V(G)| \geq 3$.

Let $c: E(G) \rightarrow\{1,2, \ldots, k\}$ be a k-edge-weighting of G, where k is a positive integer. The color code of a vertex v of G is the ordered k-tuple $\operatorname{code}_{c}(v)=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$, where ℓ_{i} is the number of edges incident with v that are weighted i for $i \in\{1,2, \ldots, k\}$. Therefore, $\ell_{1}+\ell_{2}+\cdots+\ell_{k}=d_{G}(v)$, the degree of v in G. It follows that for $u, v \in V(G)$ if $d_{G}(u) \neq d_{G}(v)$, then $\operatorname{code}_{c}(u) \neq \operatorname{code}_{c}(v)$. The k-edge-weighting c of G is called detectable if every two adjacent vertices of G have distinct color codes. The detectable chromatic number $\operatorname{det}(G)$ of G is the minimum positive integer k for which G has a detectable k-edge-weighting.

Any k-edge-weighting $c: E(G) \rightarrow\{1,2, \ldots, k\}$ induces a vertex-weighting $f_{c}: V(G) \rightarrow \mathbb{N}$ defined by $f_{c}(v)=\sum_{e \text { is incident with } v} c(e)$. An edge-weighting c is a vertex-coloring if $f_{c}(u) \neq f_{c}(v)$ for any edge $u v$. Denote by $\mu(G)$ the minimum k for which G has a vertex-coloring k-edge-weighting.

[^0]If a graph has an edge as a component, then it neither has a detectable edge-weighting nor has a vertex-coloring edge-weighting. So in this paper, we only consider graphs without a K_{2} component and such graphs are called nice graphs. As the graph G in discussion is connected and as $|V(G)| \geq 3, G$ is nice.

Karoński et al. [2] initiated the study of vertex-coloring k-edge-weighting and they posed the following conjecture:

Conjecture 1.1 (1-2-3-Conjecture). Every nice graph admits a vertex-coloring 3-edge-weighting.

Consider a vertex-coloring k-edge-weighting c of G. For $u v \in E(G)$, let $\ell_{i}, \ell_{i}^{\prime}$, respectively, be the number of edges incident with u, v that are weighted i in c. Then $1 \ell_{1}+2 \ell_{2}+\cdots+k \ell_{k} \neq 1 \ell_{1}^{\prime}+2 \ell_{2}^{\prime}+\cdots+k \ell_{k}^{\prime}$ and hence $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right) \neq\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}, \ldots, \ell_{k}^{\prime}\right)$. So c is a detectable k-edge-weighting. Consequently, $\operatorname{det}(G) \leq \mu(G)$.

Proposition 1.1. $\operatorname{det}(G) \leq \mu(G)$.
Proposition 1.2. For every nice graph G, following three conditions are equivalent:
(i) $\operatorname{det}(G)=1$,
(ii) $\mu(G)=1$,
(iii) G has no adjacent vertices with the same degree.

Proposition 1.3. If $\mu(G)=2$, then $\operatorname{det}(G)=2$.
If c is a detectable 2-edge-weighting of a k-regular graph G with $k \geq 3$, then c is a vertex-coloring 2-edgeweighting. This follows from the fact that $\ell_{1}+\ell_{2}=k=\ell_{1}^{\prime}+\ell_{2}^{\prime}$ and $\left(\ell_{1}, \ell_{2}\right) \neq\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ imply $1 \ell_{1}+2 \ell_{2} \neq 1 \ell_{1}^{\prime}+2 \ell_{2}^{\prime}$.

Proposition 1.4. Let G be a k-regular graph with $k \geq 3$. If $\operatorname{det}(G)=2$, then $\mu(G)=2$.
In [2], Karoński et al. proved that: (i) $\operatorname{det}(G) \leq 183$, and (ii) if $d_{G}(v) \geq 10^{99}$ for every $v \in V(G)$, then $\operatorname{det}(G) \leq 30$.

In [3], Addario-Berry et al. proved that: (i) $\operatorname{det}(G) \leq 4$, (ii) if $d_{G}(v) \geq 1000$ for every $v \in V(G)$, then $\operatorname{det}(G) \leq 3$, and (iii) if $\chi(G) \leq 3$, then $\operatorname{det}(G) \leq 3$.

In [4], among other results, Escuadro et al. proved that: (i) $\operatorname{det}\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right)=1$ if $n_{1}<n_{2}<\cdots<n_{k}$, $\operatorname{det}\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right)=3$ if $n_{1}=n_{2}=\cdots=n_{k}=1$ and $\operatorname{det}\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right)=2$ otherwise, where $K_{n_{1}, n_{2}, \ldots, n_{k}}$ is the complete k-partite graph with partite sizes $n_{1}, n_{2}, \ldots, n_{k}\left(k \geq 3\right.$ and $n_{1} \leq n_{2} \leq \cdots \leq n_{k}$), (ii) $\operatorname{det}\left(C_{3} \square K_{2}\right)=3$, $\operatorname{det}\left(C_{5} \square K_{2}\right)=3$ and if $n \geq 7$ is an odd integer, then $\operatorname{det}\left(C_{n} \square K_{2}\right)=2$, where \square denotes the Cartesian product, and (iii) if G is a unicyclic graph that is not a cycle, then $\operatorname{det}(G) \leq 2$.

See Fig. 5 of [4]; detectable 3-edge-weighting of $C_{3} \square K_{2}$ and that of $C_{5} \square K_{2}$, in the figure, are vertex-coloring 3-edge-weightings. Hence, $\mu\left(C_{3} \square K_{2}\right)=3$ and $\mu\left(C_{5} \square K_{2}\right)=3$. If $n \geq 7$ is an odd integer, then it follows from $\operatorname{det}\left(C_{n} \square K_{2}\right)=2$ and Proposition 1.4 that $\mu\left(C_{n} \square K_{2}\right)=2$.

Theorem 1.1. $\operatorname{det}\left(C_{3} \square K_{2}\right)=\mu\left(C_{3} \square K_{2}\right)=3$, $\operatorname{det}\left(C_{5} \square K_{2}\right)=\mu\left(C_{5} \square K_{2}\right)=3$ and if $n \geq 7$ is an odd integer, then $\operatorname{det}\left(C_{n} \square K_{2}\right)=\mu\left(C_{n} \square K_{2}\right)=2$.

From [5,6], and [4], we have:
Theorem 1.2. For the path P_{n} on n vertices, $\operatorname{det}\left(P_{3}\right)=\mu\left(P_{3}\right)=1$ and $\operatorname{det}\left(P_{n}\right)=\mu\left(P_{n}\right)=2$ if $n \geq 4$.
Theorem 1.3. For the cycle C_{n} on n vertices, $\operatorname{det}\left(C_{n}\right)=\mu\left(C_{n}\right)=2$ if $n \equiv 0(\bmod 4)$ and $\operatorname{det}\left(C_{n}\right)=\mu\left(C_{n}\right)=3$ if $n \equiv 1$, $2 \operatorname{or} 3(\bmod 4)$.

Theorem 1.4. For the complete graph K_{n} on $n \geq 3 \operatorname{vertices,~} \operatorname{det}\left(K_{n}\right)=\mu\left(K_{n}\right)=3$.
Theorem 1.5. For $r+s \geq 3$, $\operatorname{det}\left(K_{r, s}\right)=\mu\left(K_{r, s}\right)=1$ if $r \neq s$ and $\operatorname{det}\left(K_{r, s}\right)=\mu\left(K_{r, s}\right)=2$ if $r=s$, where $K_{r, s}$ is the complete bipartite graph with partite sizes r and s.

The theta $\operatorname{graph} \theta\left(\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right)$ is the graph obtained from r disjoint paths $P_{1}\left(u_{1}, v_{1}\right), P_{2}\left(u_{2}, v_{2}\right), \ldots, P_{r}\left(u_{r}, v_{r}\right)$ of lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{r}$, respectively, by identifying their end-vertices $u:=u_{1}=u_{2}=\cdots=u_{r}$ and $v:=v_{1}=$ $v_{2}=\cdots=v_{r}$, where $P_{i}\left(u_{i}, v_{i}\right)$ is a path of length ℓ_{i} with origin u_{i} and terminus v_{i}. Note that $\theta\left(\ell_{1}\right)=P_{\ell_{1}+1}$ and $\theta\left(\ell_{1}, \ell_{2}\right)=C_{\ell_{1}+\ell_{2}}$.

https://daneshyari.com/en/article/4646489

Download Persian Version:
https://daneshyari.com/article/4646489

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: npguru@gmail.com (N. Paramaguru), sampathmath@gmail.com (R. Sampathkumar).

