

Available online at www.sciencedirect.com

AKCE International Journal of Graphs and Combinatorics

AKCE International Journal of Graphs and Combinatorics 13 (2016) 146-156

www.elsevier.com/locate/akcej

Graphs with vertex-coloring and detectable 2-edge-weighting

N. Paramaguru^a, R. Sampathkumar^{b,*}

^a Mathematics Wing, Directorate of Distance Education, Annamalai University, Annamalainagar 608 002, India ^b Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar 608 002, India

> Received 20 December 2012; accepted 18 March 2016 Available online 29 June 2016

Abstract

For a connected graph G of order $|V(G)| \ge 3$ and a k-edge-weighting $c : E(G) \to \{1, 2, ..., k\}$ of the edges of G, the code, $code_c(v)$, of a vertex v of G is the ordered k-tuple $(\ell_1, \ell_2, ..., \ell_k)$, where ℓ_i is the number of edges incident with v that are weighted i. (i) The k-edge-weighting c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-edge-weighting is the detectable chromatic number det(G) of G. (ii) The k-edge-weighting c is a vertex-coloring if every two adjacent vertices u, v of G with codes $code_c(u) = (\ell_1, \ell_2, ..., \ell_k)$ and $code_c(v) = (\ell'_1, \ell'_2, ..., \ell'_k)$ have $1\ell_1 + 2\ell_2 + \cdots + k\ell_k \neq 1\ell'_1 + 2\ell'_2 + \cdots + k\ell'_k$. The minimum positive integer k for which G has a vertex-coloring k-edge-weighting is denoted by $\mu(G)$. In this paper, we have enlarged the known families of graphs with $det(G) = \mu(G) = 2$.

© 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Detectable edge-weighting; Vertex-coloring edge-weighting; Cartesian product; Tensor product

1. Introduction

For graph-theoretical terminology and notation, we in general follow [1]. In this paper, we assume that the graphs *G* in discussion are finite, connected, undirected and simple with order $|V(G)| \ge 3$.

Let $c : E(G) \rightarrow \{1, 2, ..., k\}$ be a k-edge-weighting of G, where k is a positive integer. The *color code* of a vertex v of G is the ordered k-tuple $code_c(v) = (\ell_1, \ell_2, ..., \ell_k)$, where ℓ_i is the number of edges incident with v that are weighted i for $i \in \{1, 2, ..., k\}$. Therefore, $\ell_1 + \ell_2 + \cdots + \ell_k = d_G(v)$, the degree of v in G. It follows that for $u, v \in V(G)$ if $d_G(u) \neq d_G(v)$, then $code_c(u) \neq code_c(v)$. The k-edge-weighting c of G is called *detectable* if every two adjacent vertices of G have distinct color codes. The *detectable chromatic number det*(G) of G is the minimum positive integer k for which G has a detectable k-edge-weighting.

Any k-edge-weighting $c : E(G) \to \{1, 2, ..., k\}$ induces a vertex-weighting $f_c : V(G) \to \mathbb{N}$ defined by $f_c(v) = \sum_{e \text{ is incident with } v} c(e)$. An edge-weighting c is a vertex-coloring if $f_c(u) \neq f_c(v)$ for any edge uv. Denote by $\mu(G)$ the minimum k for which G has a vertex-coloring k-edge-weighting.

* Corresponding author.

http://dx.doi.org/10.1016/j.akcej.2016.06.008

Peer review under responsibility of Kalasalingam University.

E-mail addresses: npguru@gmail.com (N. Paramaguru), sampathmath@gmail.com (R. Sampathkumar).

^{0972-8600/© 2016} Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Karoński et al. [2] initiated the study of vertex-coloring k-edge-weighting and they posed the following conjecture:

Conjecture 1.1 (1-2-3-Conjecture). Every nice graph admits a vertex-coloring 3-edge-weighting.

Consider a vertex-coloring k-edge-weighting c of G. For $uv \in E(G)$, let ℓ_i , ℓ'_i , respectively, be the number of edges incident with u, v that are weighted i in c. Then $1\ell_1 + 2\ell_2 + \cdots + k\ell_k \neq 1\ell'_1 + 2\ell'_2 + \cdots + k\ell'_k$ and hence $(\ell_1, \ell_2, \ldots, \ell_k) \neq (\ell'_1, \ell'_2, \ldots, \ell'_k)$. So c is a detectable k-edge-weighting. Consequently, $det(G) \leq \mu(G)$.

Proposition 1.1. $det(G) \leq \mu(G)$.

Proposition 1.2. For every nice graph G, following three conditions are equivalent:

(i) det(G) = 1,

(ii) $\mu(G) = 1$,

(iii) G has no adjacent vertices with the same degree.

Proposition 1.3. *If* $\mu(G) = 2$ *, then* det(G) = 2*.*

If c is a detectable 2-edge-weighting of a k-regular graph G with $k \ge 3$, then c is a vertex-coloring 2-edgeweighting. This follows from the fact that $\ell_1 + \ell_2 = k = \ell'_1 + \ell'_2$ and $(\ell_1, \ell_2) \ne (\ell'_1, \ell'_2)$ imply $1\ell_1 + 2\ell_2 \ne 1\ell'_1 + 2\ell'_2$.

Proposition 1.4. Let G be a k-regular graph with $k \ge 3$. If det(G) = 2, then $\mu(G) = 2$.

In [2], Karoński et al. proved that: (i) $det(G) \leq 183$, and (ii) if $d_G(v) \geq 10^{99}$ for every $v \in V(G)$, then $det(G) \leq 30$.

In [3], Addario-Berry et al. proved that: (i) $det(G) \le 4$, (ii) if $d_G(v) \ge 1000$ for every $v \in V(G)$, then $det(G) \le 3$, and (iii) if $\chi(G) \le 3$, then $det(G) \le 3$.

In [4], among other results, Escuadro et al. proved that: (i) $det(K_{n_1,n_2,...,n_k}) = 1$ if $n_1 < n_2 < \cdots < n_k$, $det(K_{n_1,n_2,...,n_k}) = 3$ if $n_1 = n_2 = \cdots = n_k = 1$ and $det(K_{n_1,n_2,...,n_k}) = 2$ otherwise, where $K_{n_1,n_2,...,n_k}$ is the complete k-partite graph with partite sizes n_1, n_2, \ldots, n_k ($k \ge 3$ and $n_1 \le n_2 \le \cdots \le n_k$), (ii) $det(C_3 \square K_2) = 3$, $det(C_5 \square K_2) = 3$ and if $n \ge 7$ is an odd integer, then $det(C_n \square K_2) = 2$, where \square denotes the Cartesian product, and (iii) if G is a unicyclic graph that is not a cycle, then $det(G) \le 2$.

See Fig. 5 of [4]; detectable 3-edge-weighting of $C_3 \Box K_2$ and that of $C_5 \Box K_2$, in the figure, are vertex-coloring 3-edge-weightings. Hence, $\mu(C_3 \Box K_2) = 3$ and $\mu(C_5 \Box K_2) = 3$. If $n \ge 7$ is an odd integer, then it follows from $det(C_n \Box K_2) = 2$ and Proposition 1.4 that $\mu(C_n \Box K_2) = 2$.

Theorem 1.1. $det(C_3 \Box K_2) = \mu(C_3 \Box K_2) = 3$, $det(C_5 \Box K_2) = \mu(C_5 \Box K_2) = 3$ and if $n \ge 7$ is an odd integer, then $det(C_n \Box K_2) = \mu(C_n \Box K_2) = 2$.

From [5,6], and [4], we have:

Theorem 1.2. For the path P_n on n vertices, $det(P_3) = \mu(P_3) = 1$ and $det(P_n) = \mu(P_n) = 2$ if $n \ge 4$.

Theorem 1.3. For the cycle C_n on n vertices, $det(C_n) = \mu(C_n) = 2$ if $n \equiv 0 \pmod{4}$ and $det(C_n) = \mu(C_n) = 3$ if $n \equiv 1, 2$ or $3 \pmod{4}$.

Theorem 1.4. For the complete graph K_n on $n \ge 3$ vertices, $det(K_n) = \mu(K_n) = 3$.

Theorem 1.5. For $r + s \ge 3$, $det(K_{r,s}) = \mu(K_{r,s}) = 1$ if $r \ne s$ and $det(K_{r,s}) = \mu(K_{r,s}) = 2$ if r = s, where $K_{r,s}$ is the complete bipartite graph with partite sizes r and s.

The *theta graph* $\theta(\ell_1, \ell_2, \ldots, \ell_r)$ is the graph obtained from *r* disjoint paths $P_1(u_1, v_1), P_2(u_2, v_2), \ldots, P_r(u_r, v_r)$ of lengths $\ell_1, \ell_2, \ldots, \ell_r$, respectively, by identifying their end-vertices $u := u_1 = u_2 = \cdots = u_r$ and $v := v_1 = v_2 = \cdots = v_r$, where $P_i(u_i, v_i)$ is a path of length ℓ_i with origin u_i and terminus v_i . Note that $\theta(\ell_1) = P_{\ell_1+1}$ and $\theta(\ell_1, \ell_2) = C_{\ell_1+\ell_2}$.

Download English Version:

https://daneshyari.com/en/article/4646489

Download Persian Version:

https://daneshyari.com/article/4646489

Daneshyari.com