Some lower and upper bounds on the third ABC index

Dae-Won Lee
Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Received 8 April 2014; accepted 16 February 2016
Available online 9 March 2016

Abstract

Atom-bond connectivity (ABC) index has been applied up to now to study the stability of alkanes and the strain energy of cycloalkanes. Graovac defined the second ABC index as $$
\mathrm{ABC}_{2}(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}-\frac{2}{n_{i} n_{j}}},
$$ and Kinkar studied the upper bounds. In this paper, we define a new index which is called the third ABC index and it is defined as $$
\begin{equation*} \mathrm{ABC}_{3}(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{\frac{1}{e_{i}}+\frac{1}{e_{j}}-\frac{2}{e_{i} e_{j}}} \tag{1} \end{equation*}
$$ and we present some lower and upper bounds on ABC_{3} index of graphs. (C) 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Molecular graph; Atom-bond connectivity (ABC) index; The third Atom-bond connectivity $\left(\mathrm{ABC}_{3}\right)$ index; Topological indices

1. Introduction

Molecular descriptors are playing significant role in chemistry, pharmacology, etc. Among them, topological indices have a prominent place [1]. One of the best known and widely used index is the connectivity index, χ, introduced in 1975 by Milan Randić [2], who has shown that this index reflects molecular branching. Some novel results about branching can be found in [3-7] and in the references cited therein. However, many physico-chemical properties are dependent on factors other than branching. The lower and upper bounds on ABC index of chemical trees in terms of the number of vertices were obtained in [8]. Also, it has been shown that the star $K_{1, n-1}$, has the maximal ABC value of trees.

[^0]Let $G=(V, E)$ be a simple connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$, where $|V(G)|=n$ and $|E(G)|=m$. Let $x, y \in V(G)$, then the distance $d_{G}(x, y)$ between x and y is defined as the length of any shortest path in G connecting x and y. For a vertex v_{i} of $V(G)$, its eccentricity e_{i} is the largest distance between v_{i} and any other vertex v_{k} of G, i.e, $e_{i}=\max _{v_{j} \in V(G)} d_{G}\left(v_{i}, v_{j}\right)$. The diameter $d(G)$ of G is defined as the maximum eccentricity of G. Similarly, the radius $r(G)$ is defined as the minimum eccentricity of G. There are some topological indices which are related to the eccentricity like the eccentric connectivity index

$$
\xi(G)=\sum_{v_{i} \in V(G)} d_{i} e_{i}
$$

where d_{i} is the degree of the vertex v_{i}.
The Zagreb indices have been introduced more than 30 years ago by Gutman and Trinajstić [9]. They are defined as

$$
\begin{aligned}
& M_{1}(G)=\sum_{v_{i} \in V(G)} d_{i}^{2}, \\
& M_{2}(G)=\sum_{v_{i} v_{j} \in E(G)} d_{i} d_{j} .
\end{aligned}
$$

(see [10-13] and the references therein).
Also, there are similar indices called Zagreb eccentricity indices which are also related to eccentricity. Zagreb eccentricity indices are defined as

$$
\begin{aligned}
& E_{1}(G)=\sum_{v_{i} \in V(G)} e_{i}^{2}, \\
& E_{2}(G)=\sum_{v_{i} v_{j} \in E(G)} e_{i} e_{j},
\end{aligned}
$$

(see [14-17] and the references therein).
In order to take this into account but at the same time to keep the spirit of the Randić index, Estrada et al. proposed a new index, nowadays known as the atom-bond connectivity (ABC) index, which is defined as [18]

$$
\operatorname{ABC}(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{\frac{1}{d_{i}}+\frac{1}{d_{j}}-\frac{2}{d_{i} d_{j}}}
$$

The ABC index has proven to be a valuable predictive index in the study of the heat formation of alkanes [18,19], and some mathematical properties are obtained in [20,21].

Very recently, Graovac [22] defined the second ABC index as

$$
\mathrm{ABC}_{2}(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}-\frac{2}{n_{i} n_{j}}},
$$

which was given by replacing the vertex degree to n_{i}, where n_{i} is the number of vertices of G whose distance to the vertex v_{i} is smaller than the distance to the vertex v_{j}. Also, Kinkar establised some mathematical properties of the second ABC index [23].

Now we define the third ABC index; $\mathrm{ABC}_{3}(G)$,

$$
\begin{equation*}
\mathrm{ABC}_{3}(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{\frac{1}{e_{i}}+\frac{1}{e_{j}}-\frac{2}{e_{i} e_{j}}} \tag{2}
\end{equation*}
$$

which was given by replacing the vertex degree to eccentricity, e_{i}.
In this paper, we present lower and upper bounds on ABC_{3} index of connected, simple graphs in terms of other indices; the first Zagreb index, the second Zagreb index, eccentric connectivity index, the first Zagreb eccentricity index, and the second Zagreb eccentricity index.

https://daneshyari.com/en/article/4646513

Download Persian Version:

https://daneshyari.com/article/4646513

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University.
 E-mail address: haverd2001@ gmail.com.

